624 resultados para octahedral polyoxomolybdate
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
Iron(III) complexes, (NHEt3)[Fe(III)(sal-met)(2)] and (NHEt3)[Fe(III)(sal-phe)(2)], of amino acid Schiffbase ligands, viz., N-salicylidene-L-methionine and N-salicylidene L-phenylalanine, have been prepared and their binding to bovine serum albumin (BSA) and photo-induced BSA cleavage activity have been investigated. The complexes are structurally characterized by single crystal X-ray crystallography. The crystal Structures of the discrete mononuclear rnonoanionic complexes show FeN2O4 octahedral coordination geometry in which the tridentate dianionic amino acid Schiff base ligand binds through phenolate and carboxylate oxygen and imine nitrogen atoms. The imine nitrogen atoms are trans to each other. The Fe-O and Fe-N bond distances range between 1.9 and 2.1 angstrom. The sal-met complex has two pendant thiomethyl groups. The high-spin iron(III) complexes (mu(eff) similar to 5.9 mu(B)) exhibit quasi-reversible Fe(III)/Fe(II) redox process near -0.6 V vs. SCE in water. These complexes display a visible electronic hand near 480 nm in tris-HCl buffer assignable to the phenolate-to-iron(III) charge transfer transition. The water soluble complexes bind to BSA giving binding constant values of similar to 10(5) M-1. The Complexes show non-specific oxidative cleavage of BSA protein on photo-irradiation with UV-A light of 365 nm.
Resumo:
A new two-dimensional 3d-4f mixed-metal mixed dicarboxylate (homocyclic and heterocyclic) of the formula [Gd2(H2O)2Ni(H2O)2(1,2-bdc)2(2,5-pydc)2] 3 8H2O (1; 1,2-H2bdc = 1,2-benzenedicarboxylic acid and 2,5-H2pydc = 2,5- pyridinedicarboxylic acid) has been prepared by employing the hydrothermal method. The structure has infinite onedimensional-Gd-O-Gd- chains formed by the edge-shared GdO9 polyhedral units, resulting exclusively from the connectivity between the Gd3+ ions and the 1,2-bdc units. The chains are connected by the [Ni(H2O)2(2,5-pydc)2]2- metalloligand, forming the two-dimensional layer arrangements. The stacking of the layers creates hydrophilic and hydrophobic spaces in the interlamellar region. A one-dimensional water ladder structure, formed by the extraframework water molecules, occupies the hydrophilic region while the benzene ring of 1,2-bdc occupies the hydrophobic region. To the best of our knowledge, the present compound represents the first example of a 3d-4f mixed-metal carboxylate in which two different aromatic dicarboxylate anions act as the linkers. The stabilization energies of the water clusters have been evaluated using density functional theory calculations. The water molecules in 1 are fully reversible accompanied by a change in color (greenish blue to brown) and coordination around Ni2+ ions (octahedral to distorted tetrahedral).
Resumo:
The tie lines delineating ion-exchange equilibria between MCr2O4-MAl2O4 spinel solid solution, where M is either Mn or Co, and Cr2O3-Al2O3 solid solution with the corundum structure were determined at 1373 K by electron microprobe and E0AX point count analysis of the oxide phases equilibrated with metallic Co and Au-5% Mn. The component activities in the spinel solid solutions are derived from the tie lines and the thernodynamic data for Cr2O3-Al2O3 soiid solutions available hi the literature. The Gibbs free energies of mixing calculated from the experimental data are discussed in relation to the values derived from the cation distribution a.odel based on the site preference energies and assuming random mixing on both tetrahedral and octahedral sites. Positive deviations from ideality observed in this study suggest a miscibility gap for both series of spinel solid solutions at low temperatures in the absence of oxidation.
Resumo:
ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
Ternary metal complexes involving vitamin B6 with formulas [CO",(PN-H)](anCdI [OC)'(bpy)(PN)Cl]C10(.bpHy 0 = 2,2'-bipyridine, PN = neutral pyridoxine, PN-H = anionic pyridoxine) have been prepared for the first time and characterized by means of magnetic and spectroscopic measurements. The crystal structures of the compounds have also been determined. [CO(PN-H)](CcryIsOta,l)lize s in the space group P2,/c with a = 18.900 (3) A, b = 8.764 (1) A, c = 20.041 (2) A,p = 116.05 (l)', and Z = 4 and [Cu(bpy)(PN)C1]C104-H20in the space group Pi with a = 12.136 (5) A, b = 13.283 (4) A,c = 7.195 (2) A, a = 96.91 (Z)', 0 = 91.25 (3)', y = 71.63 (3)', and Z = 2. The structures were solved by the heavy-atom method and refined by least-squares techniques to R values of 0.080 and 0.042 for 3401 and 2094 independent reflections, respectively. Both structures consist of monomeric units. The geometry around Co(II1) is octahedral and around Cu(I1) is distorted square pyramidal. In [CO(PN-H)]t(wCo IoxOy~ge)n~s ,fro m phenolic and 4-(hydroxymethyl) groups of PN-H and two nitrogens from each of two bpy's form the coordination sphere. In [Cu(bpy)(PN)C1]C104.H20o ne PN and one bpy, with the same donor sites, act as bidentate chelates in the basal plane, with a chloride ion occupying the apical position. In both structures PN and PN-H exist in the tautomeric form wherein pyridine N is protonated and phenolic 0 is deprotonated. However, a novel feature of the cobalt compound is that PN-H is anionic due to the deprotonation of the 4-(hydroxymethyl) group. The packing in both structures is governed by hydrogen bonds, and in the copper compound partial stacking of bpy's at a distance of -3.55 also adds to the stability of the system. Infrared, NMR, and ligand field spectroscopic results and magnetic measurements are interpreted in light of the structures.
Resumo:
Octahedral Co2+ centers have been connected by mu(3)-OH and mu(2)-OH2 units forming [Co-4] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co-4] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 mu B per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 Tat 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.
Resumo:
The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.
Resumo:
Ferrous and ferric complexes of 2,4-dithiobiuret (Dtb) of the type Fe(Dtb)m Xn where m, n = 1-3, and X = CI–, Br–, I– and SO 4 2– , and a neutral Fe(Dtb-H)2 complex have been synthesized and characterised by elemental analyses, magnetic susceptibility, i.r., electronic and Mössbauer spectroscopic studies. From its i.r. spectrum Dtb was found to act as a S,S-coordinating bidentate chelate. The magnetic moment, electronic and Massbauer spectra are consistent with a low spin distorted octahedral structure for the ferric complexes and a high spin form for ferrous complexes.
Resumo:
The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.
Resumo:
Reaction of Bi2O3 with MgO, NiO, Co3O4 and Al2O3 gives rise to the corresponding ternary bismuth oxides, Bi18Mg8O36, Bi18Ni8O36, Bi20Co6O39 and Bi24Al2O39. These oxides have the general formula Bi26�xMxO40�y and exhibit BCC structures related to α - Bi2O3. In the first three solids, the metal ions, M, replace bismuth randomly at the octahedral 24r sites (space group 123); in the last case, aluminium ions occupy the tetrahedral 2a sites, the phase being isostructural with Bi24Ge2O40. Starting from Bi2O3 and NiO, orthorhombic Bi2Ni2O5 has also been obtained.
Resumo:
A possible mechanism for the resistance minimum in dilute alloys in which the localized impurity states are non-magnetic is suggested. The fact is considered that what is essential to the Kondo-like behaviour is the interaction of the conduction electron spin s with the internal dynamical degrees of freedom of the impurity centre. The necessary internal dynamical degrees of freedom are provided by the dynamical Jahn-Teller effect associated with the degenerate 3d-orbitals of the transition-metal impurities interacting with the surrounding (octahedral) complex of the nearest-neighbour atoms. The fictitious spin I characterizing certain low-lying vibronic states of the system is shown to couple with the conduction electron spin s via s-d mixing and spin-orbit coupling, giving rise to a singular temperature-dependent exchange-like interaction. The resistivity so calculated is in fair agreement with the experimental results of Cape and Hake for Ti containing 0.2 at% of Fe.
Resumo:
X-ray LIII-absorption edges of platinum in nine octahedral complexes have been recorded using a bent crystal spectrograph. The edge features of the discontinuities have been interpreted with the help of qualitative molecular orbital diagrams. A correlation between the energy separation of the first two absorption maxima and the spectrochemical series of the ligands has been arrived at.
Resumo:
Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.