959 resultados para oceanography : biological and chemical : stable isotopes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence is provided from stable isotope analysis that aggregations of small ocean sunfish Mola mola (total length <1 m) feed broadly within coastal food webs and their classification as obligate predators of gelatinous zooplankton requires revision.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined variations in the Fulton condition factor, chemical composition, and stable isotopes of carbon and nitrogen in the Brazilian freshwater fish cachara (Pseudoplatystoma fasciatum), comparing farmed and wild fish in different seasons. Values for energy, protein, moisture, and Fulton's condition factor were higher for farmed than for wild fish in the rainy season, indicating better nutritional quality; however, these differences were not observed in the dry season. Likewise, we found significant enhancement of delta(15)N in farmed fish in the rainy season but not in the dry season, whereas enhancement of delta(13)C was observed in both seasons. The combined measurement of delta(13)C and delta(15)N provided traceability under all conditions. Our findings show that stable isotope analysis of C and N can be used to trace cachara origin, and that seasonal variations need to be considered when applying chemical and isotopic authentication of fish and fish products. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 177 of the Ocean Drilling Program (ODP), a well-preserved middle Eocene to lower Miocene sediment record was recovered at Site 1090 on the Agulhas Ridge in the Atlantic sector of the Southern Ocean. This new sediment record shows evidence of a hitherto unknown late Eocene opal pulse. Lithological variations, compositional data, mass-accumulation rates of biogenic and lithogenic sediment constituents, grain-size distributions, geochemistry, and clay mineralogy are used to gain insights into mid-Cenozoic environmental changes and to explore the circumstances of the late Eocene opal pulse in terms of reorganizations in ocean circulation. The base of the section is composed of middle Eocene nannofossil oozes mixed with red clays enriched in authigenic clinoptilolite and smectite, deposited at low sedimentation rates (LE 2 cm/ka). It indicates reduced terrigenous sediment input and moderate biological productivity during this preglacial warm climatic stage. The basal strata are overlain by an extended succession (100 m, 4 cm/ka) of biosiliceous oozes and muds, comprising the upper middle Eocene, the entire late Eocene, and the lowermost early Oligocene. The opal pulse occurred between 37.5 and 33.5 Ma and documents the development of upwelling cells along topographic highs, and the utilization of a marine nutrient- and silica reservoir established during the pre-late Eocene through enhanced submarine hydrothermal activity and the introduction of terrigenous solutions from chemical weathering on adjacent continents. This palaeoceanographic overturn probably was initiated through the onset of increased meridional ocean circulation, caused by the diversion of the Indian equatorial current to the south. The opal pulse was accompanied by increased influxes of terrigenous detritus from southern African sources (illite), mediated by enhanced ocean particle advection in response to modified ocean circulation. The opal pulse ended because of frontal shifts to the south around the Eocene/Oligocene boundary, possibly in response to the opening of the Drake Passage and the incipient establishment of the Antarctic Circumpolar Current. Condensed sediments and a hiatus within the early Oligocene part of the section possibly point to an invigoration of the deep-reaching Antarctic Circumpolar Current. The mid-Oligocene to lower Miocene section on long time scale exhibits less pronounced lithological variations than the older section and points to relatively stable palaeoceanographic conditions after the dramatic changes in the late Eocene to early Oligocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the examination of multinet catches (63 µm mesh size), the present study analyzes the distribution of planktonic foraminifera in Polar regions: the Labrador Sea, Greenland Sea at 75°N and Fram Strait at 80°N. The community of the planktonic foraminifera, which in the study area mainly consists of six species: left and right-coiling N. pachyderma, T. quinqueloba, G. bulloides, G. glutinata and G. uvula, is primarily controlled by the temperature in the different water masses. Besides hydrographic parameters, the changes in the horizontal and vertical distribution of N. pachyderma (s.) and T. quinqueloba as well as their shell size distribution in the study area are primarily influenced by the synchrone reproduction, which is coupled to the lunar cycle. Detailed examinations of the isotope signal in dependency on the shell size and weight for N. pachyderma (s.) and T. quinqueloba from plankton tows, indicated the weight or degree of calcification to not be the primary factor controlling the isotope signal of encrusted specimens.The d18O vital effect is primarily caused by the thermal stratification of the water column, whereas the d13C vital effect mainly results from the ontogenetic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined variations in the Fulton condition factor, chemical composition, and stable isotopes of carbon and nitrogen in the Brazilian freshwater fish cachara (Pseudoplatystoma fasciatum), comparing farmed and wild fish in different seasons. Values for energy, protein, moisture, and Fulton's condition factor were higher for farmed than for wild fish in the rainy season, indicating better nutritional quality; however, these differences were not observed in the dry season. Likewise, we found significant enhancement of delta(15)N in farmed fish in the rainy season but not in the dry season, whereas enhancement of delta(13)C was observed in both seasons. The combined measurement of delta(13)C and delta(15)N provided traceability under all conditions. Our findings show that stable isotope analysis of C and N can be used to trace cachara origin, and that seasonal variations need to be considered when applying chemical and isotopic authentication of fish and fish products. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.