944 resultados para objects
Resumo:
Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl's gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.
Resumo:
Kolmiulotteisten kappaleiden rekonstruktio on yksi konenäön haastavimmista ongelmista, koska kappaleiden kolmiulotteisia etäisyyksiä ei voida selvittää yhdestä kaksiulotteisesta kuvasta. Ongelma voidaan ratkaista stereonäön avulla, jossa näkymän kolmiulotteinen rakenne päätellään usean kuvan perusteella. Tämä lähestymistapa mahdollistaa kuitenkin vain rekonstruktion niille kappaleiden osille, jotka näkyvät vähintään kahdessa kuvassa. Piilossa olevien osien rekonstruktio ei ole mahdollista pelkästään stereonäön avulla. Tässä työssä on kehitetty uusi menetelmä osittain piilossa olevien kolmiulotteisten tasomaisten kappaleiden rekonstruktioon. Menetelmän avulla voidaan selvittää hyvällä tarkkuudella tasomaisista pinnoista koostuvan kappaleen muoto ja paikka käyttäen kahta kuvaa kappaleesta. Menetelmä perustuu epipolaarigeometriaan, jonka avulla selvitetään molemmissa kuvissa näkyvät kappaleiden osat. Osittain piilossa olevien piirteiden rekonstruointi suoritetaan käyttämäen stereonäköä sekä tietoa kappaleen rakenteesta. Esitettyä ratkaisua voitaisiin käyttää esimerkiksi kolmiulotteisten kappaleiden visualisointiin, robotin navigointiin tai esineentunnistukseen.
Resumo:
Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.
Resumo:
The dual-stream model of auditory processing postulates separate processing streams for sound meaning and for sound location. The present review draws on evidence from human behavioral and activation studies as well as from lesion studies to argue for a position-linked representation of sound objects that is distinct both from the position-independent representation within the ventral/What stream and from the explicit sound localization processing within the dorsal/Where stream.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
We adapt the Shout and Act algorithm to Digital Objects Preservation where agents explore file systems looking for digital objects to be preserved (victims). When they find something they “shout” so that agent mates can hear it. The louder the shout, the urgent or most important the finding is. Louder shouts can also refer to closeness. We perform several experiments to show that this system works very scalably, showing that heterogeneous teams of agents outperform homogeneous ones over a wide range of tasks complexity. The target at-risk documents are MS Office documents (including an RTF file) with Excel content or in Excel format. Thus, an interesting conclusion from the experiments is that fewer heterogeneous (varying skills) agents can equal the performance of many homogeneous (combined super-skilled) agents, implying significant performance increases with lower overall cost growth. Our results impact the design of Digital Objects Preservation teams: a properly designed combination of heterogeneous teams is cheaper and more scalable when confronted with uncertain maps of digital objects that need to be preserved. A cost pyramid is proposed for engineers to use for modeling the most effective agent combinations
Resumo:
Paper presented in ISA RC23 meeting, Gothenburg July 16th 2010
Resumo:
It is generally accepted that the development of the modern sciences is rooted in experiment. Yet for a long time, experimentation did not occupy a prominent role, neither in philosophy nor in history of science. With the 'practical turn' in studying the sciences and their history, this has begun to change. This paper is concerned with systems and cultures of experimentation and the consistencies that are generated within such systems and cultures. The first part of the paper exposes the forms of historical and structural coherence that characterize the experimental exploration of epistemic objects. In the second part, a particular experimental culture in the life sciences is briefly described as an example. A survey will be given of what it means and what it takes to analyze biological functions in the test tube.
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.