908 resultados para nutrient availability
Resumo:
Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, "docked" Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.
Resumo:
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
Resumo:
Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.
Resumo:
The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.
Resumo:
Phytoplankton regulate internal pigment concentrations in response to light and nutrient availability. Chlorophyll to carbon ratios (Chl:Cphyto) are commonly reported as a function of growth irradiance (Eg) for evaluating the photoacclimation response of phytoplankton. In contrast to most culture experiments, natural phytoplankton communities experience fluctuating environmental conditions making it difficult to compare field and lab observations. Observing and understanding photoacclimation in nature is important for deciphering changes in Chl:Cphyto resulting from environmental forcings and for accurately estimating net primary production (NPP) in models which rely on a parameterized description of photoacclimation. Here we employ direct analytical measurements of Cphyto and parallel high-resolution biomass estimates from particulate backscattering (bbp) and flow cytometry to investigate Chl:Cphyto in natural phytoplankton communities. Chl:Cphyto observed over a wide range of Eg in the field was consistent with photoacclimation responses inferred from satellite observations. Field-based photoacclimation observations for a mixed natural community contrast with laboratory results for single species grown in continuous light and nutrient replete conditions. Applying a carbon-based net primary production (NPP) model to our field data for a north-south transect in the Atlantic Ocean results in estimates that closely match 14C depth-integrated NPP for the same cruise and with historical records for the distinct biogeographic regions of the Atlantic Ocean. Our results are consistent with previous satellite and model observations of cells growing in natural or fluctuating light and showcase how direct measurements of Cphyto can be applied to explore phytoplankton photophysiology, growth rates, and production at high spatial resolution in-situ.
Parasitic foraminifers on a deep-sea chiton (Mollusca, Polyplacophora, Leptochitonidae) from Iceland
Resumo:
Epibiotic foraminifers selectively settle on the most food-rich area of the host substrate, even when the species acts as a facultative ectoparasite in later life stages. In 398 specimens examined of the deep-sea chiton Leptochiton arcticus from Iceland, 46% show evidence of infestation by foraminifers, with many showing extensive shell damage from present and past bioeroding epibionts. Disturbances to the inner layer of the host shell are indicative of parasitism, as evidenced both by wound healing calcification and protrusions of the foraminiferan tubules. The epibionts employ different feeding strategies at different stages of their life cycle, taking advantage of nutrient availability from the posterior respiration currents and excrement of the chitons as juveniles, and feeding parasitically as adults. Epibiont persistence on individual hosts-through successive generations, or long-term continuous bioerosion by epibionts-allow larger adult parasitic foraminifers of Hyrrokkin sarcophaga to penetrate the thick tail valve of a chiton and feed parasitically on the host tissue. The proportion of chitons infested increases with host size, indicating that epibionts are accumulated through a chiton's life, seemingly without major detriment to host survivorship.
Resumo:
In this study the fate of naphthalene, fluorene and pyrene were investigated in the presence and absence of enchytraeid worms. Microcosms were used, which enabled the full fate of 14C-labelled PAHs to be followed. Between 60 and 70% of naphthalene was either mineralised or volatilised, whereas over 90% of the fluorene and pyrene was retained within the soil. Mineralisation and volatilisation of naphthalene was lower in the presence of enchytraeid worms. The hypothesis that microbial mineralisation of naphthalene was limited by enchytraeids because they reduce nutrient availability, and hence limit microbial carbon turnover in these nutrient poor soils, was tested. Ammonia concentrations increased and phosphorus concentrations decreased in all microcosms over the 56 d experimental period. The soil nutrient chemistry was only altered slightly by enchytraeid worms, and did not appear to be the cause of retardation of naphthalene mineralisation. The results suggest that microbial availability and volatilisation of naphthalene is altered as it passes through enchytraeid worms due to organic material encapsulation. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The shallow water kelp Laminaria digitata, abundant in coastal zones of the North Atlantic, is exposed to a range of hydrodynamic environments that makes it ideal for assessing the role of water motion on their growth rate. Here we quantify the growth of L. digitata, as a factor of blade and stipe elongation, at sites adjacent to Strangford Lough, Northern Ireland under different hydrodynamic conditions over a one year period. A modelling approach was used to numerically determine both the temporal and spatial variability of the hydrodynamic environment. Ambient seawater nutrient concentrations, temperature and irradiance were measured as well as the internal nutrient status of the L. digitata populations. Kelp populations growing in the greatest and lowest water motion showed the lowest growth rates. Differences observed in growth rate could not be attributed to seawater nutrient availability, temperature or light. The internal nutrient status also suggested no influence on the observed differences in growth rate. Therefore if there are minimal differences in light, temperature and nutrients between sites, then populations of L. digitata exposed to different water motions are likely to exhibit different growth rates. It is suggested that the growth rate differences observed were a function of water motion with the possibility that, in response to the hydrodynamic forces experienced by the algal cells, L. digitata kelps in the high energy environments were putting more energy into strengthening cell walls rather than blade elongation
Resumo:
This thesis revealed the most importance factors shaping the distribution, abundance and genetic diversity of four marine foundation species. Environmental conditions, particularly sea temperatures, nutrient availability and ocean waves, played a primary role in shaping the spatial distribution and abundance of populations, acting on scales varying from tens of meters to hundreds of kilometres. Furthermore, the use of Species Distribution Models (SDMs) with biological records of occurrence and high-resolution oceanographic data, allowed predicting species distributions across time. This approach highlighted the role of climate change, particularly when extreme temperatures prevailed during glacial and interglacial periods. These results, when combined with mtDNA and microsatellite genetic variation of populations allowed inferring for the influence of past range dynamics in the genetic diversity and structure of populations. For instance, the Last Glacial Maximum produced important shifts in species ranges, leaving obvious signatures of higher genetic diversities in regions where populations persisted (i.e., refugia). However, it was found that a species’ genetic pool is shaped by regions of persistence, adjacent to others experiencing expansions and contractions. Contradicting expectations, refugia seem to play a minor role on the re(colonization) process of previously eroded populations. In addition, the available habitat area for expanding populations and the inherent mechanisms of species dispersal in occupying available habitats were also found to be fundamental in shaping the distributions of genetic diversity. However, results suggest that the high levels of genetic diversity in some populations do not rule out that they may have experienced strong genetic erosion in the past, a process here named shifting genetic baselines. Furthermore, this thesis predicted an ongoing retraction at the rear edges and extinctions of unique genetic lineages, which will impoverish the global gene pool, strongly shifting the genetic baselines in the future.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Ciências Funcionais), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differences. In this regard, two experiments were design: the first one consisted on the alteration of overall nutrient availabilities in growth medium; and the second one comprised changes in nitrogen and sulfur concentrations maintaining the concentrations of the other nutrients present in a commercial growth medium (Nutribloom plus), which is frequently used in aquaculture. Microalgae dried biomass was characterized biochemically and elemental analysis was also performed for all samples. In first experimental design: linear trends between nutrient availability in growth media and microalgae protein content were obtained; optimum productivities of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) were attained for both R. marina and N. gaditana in growth media enriched with 1000 L L-1 of nutrient solution whereas for Isochrysis sp. the double of Nutribloom plus was needed; the decrease of glucans and total monosaccharides with nutrient availability for R. marina and Isochrysis sp. showed the occurrence of a possible depletion of carbohydrates towards lipids and proteins biosynthesis. Second experimental desing: N. gaditana exhibited the highest variation in their biochemical composition against the applied perturbation; variations observed for microalgae in their biochemical composition were reflected in their elemental stoichiometry; in N. gaditana the highest nitrogen concentrations lead to overall maximum productivities of the biochemical parameters. The results of the present work show two stress-inducement strategies for microalgae that may constitute a base for further investigations on their biochemical enhancement.
Resumo:
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.
Resumo:
The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii
Resumo:
To study emerging diseases, I employed a model pathogen-host system involving infections of insect larvae with the opportunistic fungus Aspergillus flavus, providing insight into three mechanisms ofpathogen evolution namely de novo mutation, genome decay, and virulence factoracquisition In Chapter 2 as a foundational experiment, A. flavus was serially propagated through insects to study the evolution of an opportunistic pathogen during repeated exposure to a single host. While A. flavus displayed de novo phenotypic alterations, namely decreased saprobic capacity, analysis of genotypic variation in Chapter 3 signified a host-imposed bottleneck on the pathogen population, emphasizing the host's role in shaping pathogen population structure. Described in Chapter 4, the serial passage scheme enabled the isolation of an A. flavus cysteine/methionine auxotroph with characteristics reminiscent of an obligate insect pathogen, suggesting that lost biosynthetic capacity may restrict host range based on nutrient availability and provide selection pressure for further evolution. As outlined in Chapter 6, cysteine/methionine auxotrophy had the pleiotrophic effect of increasing virulence factor production, affording the slow-growing auxotroph with a modified pathogenic strategy such that virulence was not reduced. Moreover in Chapter 7, transformation with a virulence factor from a facultative insect pathogen failed to increase virulence, demonstrating the necessity of an appropriate genetic background for virulence factor acquisition to instigate pathogen evolution.