995 resultados para nuclear spectroscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of lanthanum ions on the structural and conformational change of yeast tRNA(Phe) was studied by H-1 NMR. The results suggest that the tertiary base pair (G-15)(C-48), which was located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by adding La3+ and shifted 0.33 downfield. Based pair (U-8)(A-14), which is associated with a tertiary interaction, links the base of the acceptor stem to the D-stem and anchors the elbow of the L structure, shifted 0.20 upfield. Another imino proton that may be affected by La3+ in tRNA(Phe) is the tertiary base pair (G-19)(C-56). The assignment of this resonance is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.2. This base pair helps to anchor the D-loop to the T psi C loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'New instrumentation for micro-imaging X-ray absorption spectroscopy using optical detection methods', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 246(2) pp.445-451 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langstaff, David; Chase, T., (2007) 'A multichannel detector array with 768 pixels developed for electron spectroscopy', Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573(1-2) pp.169-171 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langstaff, David; Bushell, A.; Chase, T.; Evans, D.A., (2005) 'A fully integrated multi-channel detector for electron spectroscopy', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 238 pp.219-223 RAE2008 Synchrotron Radiation in Materials Science ? Proceedings of the 4th Conference on Synchrotron Radiation in Materials Science 4th Conference on Synchrotron Radiation in Materials Science

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina. METHODS: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm. RESULTS: Raman spectra of each of the photoreceptor inner and outer segments (PIS, POS) and of the outer nuclear layer (ONL) of the retina acquired at 785 nm were dominated by vibrational features characteristic of proteins and lipids. There was a clear difference between the inner and outer domains in the spectroscopic regions, amide I and III, known to be sensitive to protein conformation. The spectra recorded with 633 nm excitation mirrored those observed at 785 nm excitation for the amide I region, but with an additional pattern of bands in the spectra of the PIS region, attributed to cytochrome c. The same features were even more enhanced in spectra recorded with 514 nm excitation. A significant nucleotide contribution was observed in the spectra recorded for the ONL at all three excitation wavelengths. A Raman map was constructed of the major spectral components found in the retinal outer segments, as predicted by principal component analysis of the data acquired using 633 nm excitation. Comparison of the Raman map with its histological counterpart revealed a strong correlation between the two images. CONCLUSIONS: It has been demonstrated that Raman spectroscopy offers a unique insight into the biochemical composition of the light-sensing cells of the retina following the application of standard histological protocols. The present study points to the considerable promise of Raman microscopy as a component-specific probe of retinal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 10(16) W cm(-2) at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5-8 eV with electron density in the range 10(21)-10(22) cm(-3). These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To relate nuclear magnetic resonance lipoprotein subclass profiles (NMR-LSP) and other lipoprotein-related factors with carotid intima-media thickness (IMT) in Type 1 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for the determination of three commonly encountered ecstasy type drugs has been demonstrated using proton nuclear magnetic resonance spectrometry (H-1-NMR).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.