992 resultados para noise control
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
We studied the visual mechanisms that serve to encode spatial contrast at threshold and supra-threshold levels. In a 2AFC contrast-discrimination task, observers had to detect the presence of a vertical 1 cycle deg-1 test grating (of contrast dc) that was superimposed on a similar vertical 1 cycle deg-1 pedestal grating, whereas in pattern masking the test grating was accompanied by a very different masking grating (horizontal 1 cycle deg-1, or oblique 3 cycles deg-1). When expressed as threshold contrast (dc at 75% correct) versus mask contrast (c) our results confirm previous ones in showing a characteristic 'dipper function' for contrast discrimination but a smoothly increasing threshold for pattern masking. However, fresh insight is gained by analysing and modelling performance (p; percent correct) as a joint function of (c, dc) - the performance surface. In contrast discrimination, psychometric functions (p versus logdc) are markedly less steep when c is above threshold, but in pattern masking this reduction of slope did not occur. We explored a standard gain-control model with six free parameters. Three parameters control the contrast response of the detection mechanism and one parameter weights the mask contrast in the cross-channel suppression effect. We assume that signal-detection performance (d') is limited by additive noise of constant variance. Noise level and lapse rate are also fitted parameters of the model. We show that this model accounts very accurately for the whole performance surface in both types of masking, and thus explains the threshold functions and the pattern of variation in psychometric slopes. The cross-channel weight is about 0.20. The model shows that the mechanism response to contrast increment (dc) is linearised by the presence of pedestal contrasts but remains nonlinear in pattern masking.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
Aging is known to have a degrading influence on many structures and functions of the human sensorimotor system. The present work assessed aging-related changes in postural sway using fractal and complexity measures of the center of pressure (COP) dynamics with the hypothesis that complexity and fractality decreases in the older individuals. Older subjects (68 +/- 4 years) and young adult subjects (28 +/- 7 years) performed a quiet stance task (60 s) and a prolonged standing task (30 min) where subjects were allowed to move freely. Long-range correlations (fractality) of the data were estimated by the detrended fluctuation analysis (DFA); changes in entropy were estimated by the multi-scale entropy (MSE) measure. The DFA results showed that the fractal dimension was lower for the older subjects in comparison to the young adults but the fractal dimensions of both groups were not different from a 1/f noise, for time intervals between 10 and 600 s. The MSE analysis performed with the typically applied adjustment to the criterion distance showed a higher degree of complexity in the older subjects, which is inconsistent with the hypothesis that complexity in the human physiological system decreases with aging. The same MSE analysis performed without adjustment showed no differences between the groups. Taken all results together, the decrease in total postural sway and long-range correlations in older individuals are signs of an adaptation process reflecting the diminishing ability to generate adequate responses on a longer time scale.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.
Resumo:
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject`s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.
Resumo:
Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem when the subject went from standing to kneeling. There was a lowering of the proportional and derivative gains and an increase in the neural noise power. Additional increases in the neural noise power were found also when the subject closed his eyes.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
We discuss quantum error correction for errors that occur at random times as described by, a conditional Poisson process. We shoo, how a class of such errors, detected spontaneous emission, can be corrected by continuous closed loop, feedback.
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.