997 resultados para nitrogen limitation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariate statistical analysis was applied to a 10 year, multiparameter data set in an effort to describe the spatial dependence and inherent variation of water quality patterns in the mangrove estuaries of Ten Thousand Islands – Whitewater Bay area. Principal component analysis (PCA) of 16 water quality parameters collected monthly resulted in five groupings, which explained 72.5% of the variance of the original variables. The “Organic” component (PCI) was composed of alkaline phosphatase activity, total organic nitrogen, and total organic carbon; the “Dissolved Inorganic N” component (PCII) contained NO 3 − , NO 2 − , and NH 4 + ; the “Phytoplankton” component (PCIII) was made up of total phosphorus, chlorophyll a, and turbidity; dissolved oxygen and temperature were inversely related (PCIV); and salinity and soluble reactive phosphorus made up PCV. A cluster analysis of the mean and SD of PC scores resulted in the spatial aggregation of the 47 fixed stations into six classes having similar water quality, which we defined as: Mangrove Rivers, Whitewater Bay, Gulf Islands, Coot Bay, Blackwater River, and Inland Waterway. Marked differences in physical, chemical, and biological characteristics among classes were illustrated by this technique. Comparison of medians and variability of parameters among classes allowed large scale generalizations as to underlying differences in water quality in these regions. A strong south to north gradient in estuaries from high N - low P to low N - high P was ascribed to marked differences in landuse, freshwater input, geomorphology, and sedimentary geology along this tract. The ecological significance of this gradient discussed along with potential effects of future restoration plans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds. Carbonate - Nutrient lim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of relative nutrient availability in south Florida suggest spatial differences regarding the importance of nitrogen (N) and phosphorus (P) to benthic primary producers. We did a 14-month in situ fertilization experiment to test predictions of N and P limitation in the subtropical nearshore marine waters of the upper Florida Keys. Six sites were divided into two groups (nearshore, offshore) representing the endpoints of an N: P stoichiometric gradient. Twenty-four plots were established at each site with six replicates of each treatment (1N, 1P, 1N1P, control), for a total of 144 experimental plots. The responses of benthic communities to N and P enrichment varied appreciably between nearshore and offshore habitats. Offshore seagrass beds were strongly limited by nitrogen, and nearshore beds were affected by nitrogen and phosphorus. Nutrient addition at offshore sites increased the length and aboveground standing crop of the two seagrasses, Thalassia testudinum and Syringodium filiforme, and growth rates of T. testudinum. Nutrient addition at nearshore sites increased the relative abundance of macroalgae, epiphytes, and sediment microalgae. N limitation of seagrass in this carbonate system was clearly demonstrated. However, added phosphorus was retained in the system more effectively than N, suggesting that phosphorus might have important long-term effects on these benthic communities. The observed species-specific responses to nutrient enrichment underscores the need to monitor all primary producers when addressing questions of nutrient limitation and eutrophication in seagrass communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gra­dients of resources (such as water and nutrient limitation) and regulators (such as salinity and sul­fide toxicity). We tested the variability of man­grove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients repre­sented by limited phosphorus concentrations com­bined with high sulfide concentrations, respec­tively. Foliar d13C ratios exhibited a range from ­ 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differ­ences in dissolved inorganic nitrogen, soluble reac­tive phosphorus, and sulfide porewater concentra­tions. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salin­ity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a con­founding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape fac­tors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should ac­count for watershed-specific organic inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 μg P g−1 and 27 mg N g−1 to 377 μg P g−1 and 22 mg N g−1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52–128 and 24–41, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in δ15N values for canopy (4.0 to −9.4‰), Campnosperma panamense (4.0 to −7.8‰) and understorey (4.8 to −3.1‰) species. Foliar δ15N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar δ15N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters of provision of the phytoplankton community with inorganic nitrogen compounds in the western Black Sea in April 1993 are analyzed (specifically, dependence of rates of uptake of nitrates and ammonium by microplankton on substrate concentration, diurnal dynamics of assimilation of mineral nitrogen, values of f-ratios, and proportions of carbon and nitrogen fluxes). In most cases all the parameters of degree of phytoplankton provision with mineral nitrogen are shown to vary unidirectionally, both at the surface and in the photosynthesis zone. Individual areas of a relatively small region studied differed markedly in their level of provision of algae with inorganic nitrogen compounds - from complete saturation to high degree of limitation of phytoplankton development due to nitrogen deficiency in the environment. Obtained results allow to estimate provision of Black Sea phytoplankton with nitrogen in terms of limitation of rates of uptake of its inorganic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.