534 resultados para neuroimaging
Resumo:
On July 17, 1990, President George Bush ssued “Proclamation #6158" which boldly declared the following ten years would be called the “Decade of the Brain” (Bush, 1990). Accordingly, the research mandates of all US federal biomedical institutions worldwide were redirected towards the study of the brain in general and cognitive neuroscience specifically. In 2008, one of the greatest legacies of this “Decade of the Brain” is the impressive array of techniques that can be used to study cortical activity. We now stand at a juncture where cognitive function can be mapped in the time, space and frequency domains, as and when such activity occurs. These advanced techniques have led to discoveries in many fields of research and clinical science, including psychology and psychiatry. Unfortunately, neuroscientific techniques have yet to be enthusiastically adopted by the social sciences. Market researchers, as specialized social scientists, have an unparalleled opportunity to adopt cognitive neuroscientific techniques and significantly redefine the field and possibly even cause substantial dislocations in business models. Following from this is a significant opportunity for more commercially-oriented researchers to employ such techniques in their own offerings. This report examines the feasibility of these techniques.
Resumo:
Functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and magnetoencephalography (MEG) have been the principal neuroimaging tools used to assess the site and nature of cortical deficits in human amblyopia. A review of this growing body of work is presented here with particular reference to various controversial issues, including whether or not the primary visual cortex is dysfunctional, the involvement of higher-order visual areas, neural differences between strabismic and anisometropic amblyopes, and the effects of modern-day drug treatments. We also present our own recent MEG work in which we used the analysis technique of synthetic aperture magnetometry (SAM) to examine the effects of strabismic amblyopia on cortical function. Our results provide evidence that the neuronal assembly associated with form perception in the extrastriate cortex may be dysfunctional in amblyopia, and that the nature of this dysfunction may relate to a change in the normal temporal pattern of neuronal discharges. Based on these results and existing literature, we conclude that a number of cortical areas show reduced levels of activation in amblyopia, including primary and secondary visual areas and regions within the parieto-occipital cortex and ventral temporal cortex. Copyright © 2006 Taylor & Francis Group, LLC.
Resumo:
We discuss the application of beamforming techniques to the field of magnetoencephalography (MEG). We argue that beamformers have given us an insight into the dynamics of oscillatory changes across the cortex not explored previously with traditional analysis techniques that rely on averaged evoked responses. We review several experiments that have used beamformers, with special emphasis on those in which the results have been compared to those observed in functional magnetic resonance imaging (fMRI) and on those studying induced phenomena. We suggest that the success of the beamformer technique, despite the assumption that there are no linear interactions between the mesoscopic local field potentials across distinct cortical areas, may tell us something of the balance between functional integration and segregation in the human brain. What is more, MEG beamformer analysis facilitates the study of these complex interactions within cortical networks that are involved in both sensory-motor and cognitive processes. © 2005 Wiley-Liss, Inc.
Resumo:
Neuroimaging is increasingly used to understand conditions like stroke and epilepsy. However, there is growing recognition that neuroimaging can raise ethical issues. We used interpretative phenomenological analysis to analyse interview data pre-and post-scan to explore these ethical issues. Findings show participants can become anxious prior to scanning and the protocol for managing incidental findings is unclear. Participants lacked a frame of reference to contextualize their expectations and often drew on medical narratives. Recommendations to reduce anxiety include dialogue between researcher and participant to clarify understanding during consent and the use of a `virtual tour' of the neuroimaging experience.
Resumo:
In this thesis the relationship between visual attention, affordance and action was investigated using a combination of neuroimaging and behavioural studies. Neuronal activity and movement construction were assessed when individuals passively viewed or produced action towards stimuli varying in their affordance and/or attentional attributes. The main findings were: (i) the passive perception of both object and abstract visual patterns was associated with decreased alpha and/or beta activity in sensori-motor cortex, occipito-temporal cortex and cerebellum. These are brain regions associated with the planning and production of visually guided action; (ii) for object patterns, decreased alpha and beta activity was also observed in regions of superior parietal and premotor cortex. These regions contain neurons argued to be essential for matching hand kinematics with manipulate objects; and (iii) in both control participants and a deafferented individual, studies of planned and unplanned pointing manoeuvres revealed that the attentional bias of a stimulus was critical for fast, efficient action production whereas the affordance bias was critical in determining end-point accuracy. Taken together, these findings demonstrate that affordance is not a necessary prerequisite for the potential of motor codes. Rather, affordance enables the construction of motor responses that reflect object functionality and/or manipulability. They further demonstrate that visual attention is associated with the potentiation of motor codes. Indeed, directed visual attention would appear critical for speeded responses. These findings provide new insights into the roles of directed visual attention and affordance upon action.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
Bipolar disorder (BP) is among the top ten most disabling illnesses worldwide. This review includes findings from recent studies employing functional neuroimaging to examine functional abnormalities in neural systems underlying core domains of the psychopathology in BP: emotion processing, emotion regulation and executive control, and common comorbid features of BP, that are relevant to the wide spectrum of BP rather than focused on the more traditional BPI subtype, and that may facilitate future identification of diagnostically-relevant biomarkers of the disorder. In addition, an emerging number of studies are reviewed that demonstrate the use of neuroimaging to elucidate biomarkers whose identification may help to (1) identify at-risk individuals who will subsequently develop the illness to facilitate early intervention, (2) identify targets for treatment and markers of treatment response. The use of newer neuroimaging techniques and potential confounds of psychotropic medication upon neuroimaging findings in BP are also examined. These approaches will help to improve diagnosis and the mental well-being of all individuals with BP.
Resumo:
Objectives: The sex of an individual is known to modulate the clinical presentation of bipolar disorder (BD), but little is known as to whether there are significant sex-by-diagnosis interactions on the brain structural and functional correlates of BD. Methods: We conducted a literature review of magnetic resonance imaging (MRI) studies in BD, published between January 1990 and December 2010, reporting on the effects of sex and diagnosis. In the absence of any functional MRI (fMRI) studies, this review was supplemented by original data analyses focusing on sex-by-diagnosis interactions on patterns of brain activation obtained during tasks of working memory, incentive decision-making, and facial affect processing. Results: We found no support for a sex-by-diagnosis interaction in global gray or white matter volume. Evidence regarding regional volumetric measures is limited, but points to complex interactions between sex and diagnosis with developmental and temperamental factors within limbic and prefrontal regions. Sex-by-diagnosis interactions were noted in the pattern of activation within the basal ganglia during incentive decision-making and within ventral prefrontal regions during facial affect processing. Conclusions: Potential sex-by-diagnosis interactions influencing the brain structural and functional correlates of disease expression in BD have received limited attention. Our data suggest that the sex of an individual modulates structure and function within subcortical and cortical regions implicated in disease expression. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S.
Resumo:
The aim of this study was to investigate participants' experiences of taking part in research conducted using fMRI or MEG procedures. Forty-four participants completed a questionnaire after taking part in either fMRI or MEG experiments; the questionnaire asked about experiences of and attitudes toward fMRI/MEG. Ten follow-up interviews were conducted to enable an in-depth analysis of these attitudes and experiences. The findings were generally positive: all participants thought fMRI and MEG were safe procedures, 93% would recommend participating in neuroimaging research to their friends and family, and participants were positive about participating in future neuroimaging research. However, some negative issues were identified. Some participants reported feeling nervous prior to scanning procedures, several participants reported side-effects after taking part, a number of participants were upset at being in a confined space and some participants did not feel confident about exiting the scanner in an emergency. Several recommendations for researchers are made, including a virtual tour of the scanning equipment during the consenting process in order to better prepare potential participants for the scanning experience and to minimize the potential psychological discomfort sometimes experienced in neuroimaging research. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles—overlap, mosaicism, contingency and entanglement—that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators.
Resumo:
Behavioural studies have shown that dyslexics are a heterogeneous population and between-group comparisons are thus inadequate. Some subjects do not develop dyslexia despite having a deficit implicated in this disorder, which points to protective factors. Dyslexia co-occurs with ADHD, DCD, SLI, and SSD, so that future behavioural studies will need to screen and/or statistically control for other disorders. Studies of multiple cases of DPs with other developmental disorders are necessary. Neuroimaging findings show structural and/or functional brain abnormalities in language areas, V5/MT and the cerebellum. Future neuroimaging studies need to investigate the whole reading network and multiple cases. Six dyslexia risk genes have been found, mostly involved in neural migration, which may suggest dyslexia is a deficit of neuronal migration. However, it is not clear how these genes can restrict migration to specific brain areas. As a complex and heterogeneous disorder, dyslexia is likely to be associated with several mutated genes. ADHD and SSD are characterised by genetic risk factors which are partially shared with dyslexia, resulting in comorbidity. Future genetic studies need to focus on identifying other risk genes and pleiotropic genes involved in comorbidities, and linking genotypes implicated in dyslexia with brain structure. Any theory of dyslexia needs to take into account a multitude of risk and protective factors across behavioural, neural and genetic domains.
Resumo:
There have been many functional imaging studies of the brain basis of theory of mind (ToM) skills, but the findings are heterogeneous and implicate anatomical regions as far apart as orbitofrontal cortex and the inferior parietal lobe. The functional imaging studies are reviewed to determine whether the diverse findings are due to methodological factors. The studies are considered according to the paradigm employed (e.g., stories vs. cartoons and explicit vs. implicit ToM instructions), the mental state(s) investigated, and the language demands of the tasks. Methodological variability does not seem to account for the variation in findings, although this conclusion may partly reflect the relatively small number of studies. Alternatively, several distinct brain regions may be activated during ToM reasoning, forming an integrated functional "network." The imaging findings suggest that there are several "core" regions in the network-including parts of the prefrontal cortex and superior temporal sulcus-while several more "peripheral" regions may contribute to ToM reasoning in a manner contingent on relatively minor aspects of the ToM task. © 2008 Wiley-Liss, Inc.
Resumo:
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions.
Resumo:
Neuroimaging studies of episodic memory, or memory of events from our personal past, have predominantly focused their attention on medial temporal lobe (MTL). There is growing acknowledgement however, from the cognitive neuroscience of memory literature, that regions outside the MTL can support episodic memory processes. The medial prefrontal cortex is one such region garnering increasing interest from researchers. Using behavioral and functional magnetic resonance imaging measures, over two studies, this thesis provides evidence of a mnemonic role of the medial PFC. In the first study, participants were scanned while judging the extent to which they agreed or disagreed with the sociopolitical views of unfamiliar individuals. Behavioral tests of associative recognition revealed that participants remembered with high confidence viewpoints previously linked with judgments of strong agreement/disagreement. Neurally, the medial PFC mediated the interaction between high-confidence associative recognition memory and beliefs associated with strong agree/disagree judgments. In an effort to generalize this finding to well-established associative information, in the second study, we investigated associative recognition memory for real-world concepts. Object-scene pairs congruent or incongruent with a preexisting schema were presented to participants in a cued-recall paradigm. Behavioral tests of conceptual and perceptual recognition revealed memory enhancements arising from strong resonance between presented pairs and preexisting schemas. Neurally, the medial PFC tracked increases in visual recall of schema-congruent pairs whereas the MTL tracked increases in visual recall of schema-incongruent pairs. Additionally, ventral areas of the medial PFC tracked conceptual components of visual recall specifically for schema-congruent pairs. These findings are consistent with a recent theoretical proposal of medial PFC contributions to memory for schema-related content. Collectively, these studies provide evidence of a role for the medial PFC in associative recognition memory persisting for associative information deployed in our daily social interactions and for those associations formed over multiple learning episodes. Additionally, this set of findings advance our understanding of the cognitive contributions of the medial PFC beyond its canonical role in processes underlying social cognition.