517 resultados para neurobiology
Resumo:
Adolescentes humanos frequentemente associam o fumo do tabaco ao consumo de bebidas alcoólicas. A despeito desta associação, pouco se sabe sobre a neurobiologia básica da coexposição no cérebro adolescente. No presente estudo, avaliamos os efeitos da exposição, que ocorreu do 30 ao 45 dia de vida pós natal (PN30 a PN45), à nicotina e/ou ao etanol durante a adolescência (PN38-45) e da retirada (PN50-57) na memória visuoespacial através do Labirinto Aquático de Morris (LAM: 6 sessões + 1 prova, 3 tentativas/sessão, latência = 2 min), em 4 grupos de camundongos Suíços machos e fêmeas: (1) exposição concomitante à NIC [solução de nicotina free base (50 μg/ml) em sacarina a 2% para beber] e ETOH [solução de etanol (25%, 2 g/kg) injetada i.p. em dias alternados]; (2) exposição à NIC; (3) exposição ao ETOH; (4) veículo (VEH). Uma vez que os resultados comportamentais podem sofrer a interferência de alterações motoras, avaliamos (a) a atividade locomotora no Teste de Campo Aberto (sessão única, 5 min) e (b) a coordenação e o equilíbrio no Teste de Locomoção Forçada sobre Cilindro Giratório (5 tentativas, latência = 2 min). Para os efeitos da exposição à NIC e/ou ao ETOH na eficiência do transporte de aminoácidos excitatórios, avaliamos a captação de [3H] D-aspartato no hipocampo. A expressão do transportador glial GLAST/EAAT1 foi avaliada por Western-blot. Durante a exposição, animais ETOH e NIC+ETOH apresentaram déficits de memória nas sessões de teste e de prova no LAM enquanto, na retirada, os grupos NIC e NIC+ETOH apresentaram prejuízos na retenção. Não houve diferenças significativas entre os grupos de tratamento em nenhum dos parâmetros testados em ambos os testes motores, tanto na exposição quanto na abstinência. Os grupos NIC, ETOH e NIC+ETOH tiveram uma diminuição significativa na captação de [3H] D-aspartato ao final do período de exposição, com uma normalização da atividade dos EAATs na retirada das drogas. O tratamento com NIC e ETOH reduziu ainda a expressão de GLAST/EAAT1 no hipocampo em ambas as idades testadas. O uso de etanol na adolescência causa prejuízos à memória de camundongos, com um efeito negativo mais acentuado quando associado à nicotina. Contudo, a retirada da nicotina apresentou um efeito mandatório nos danos encontrados. Ambas as drogas, isoladamente ou na coexposição, alteram os níveis de atividade e expressão dos EAATs, sugerindo que os resultados bioquímicos estejam implicados nas alterações comportamentais encontradas.
Resumo:
Há um extenso número de evidências apontando para o estresse como tendo um papel crítico na iniciação, manutenção e relapso após a retirada, do hábito do tabagismo. De modo geral, adolescentes são mais sensíveis aos efeitos no sistema nervoso central de ambos estresse e nicotina, principal componente psicoativo do cigarro. No entanto, há uma escassez de estudos em neurobiologia básica que avaliem as possíveis interações entre os efeitos no sistema nervoso central entre nicotina e estresse nesta idade. Deste modo, o objetivo do presente estudo foi avaliar os efeitos da exposição à nicotina e estresse durante a adolescência de camundongos em comportamentos sociais e comportamentos associados a ansiedade e depressão. Para este estudo utilizamos camundongos Suíços de ambos os sexos. A partir do 30 dia pós-natal (PN) camundongos foram expostos à nicotina (até PN40) e/ou estresse (até PN38 para os animais avaliados em PN39-40 e PN40 para os animais avaliados nas outras idades). Desta forma, utilizamos quatro grupos experimentais: 1) Exposição concomitante de solução de nicotina (diluida na água potável, 50g/ml) e estresse por contenção (1h/dia); 2) Exposição somente à nicotina via oral; 3) Exposição somente ao estresse por contenção; 4) Grupo controle. Para a avaliação comportamental utilizamos: o teste do labirinto em cruz elevado (LCE), o teste de abordagem social de três câmaras (TS) e o teste do nado forçado (FST). Cada animal foi avaliado nos três testes, em um entre três momentos: ao final do período de exposição (PN39/40), após um curto período a partir do término da exposição (PN44/45) ou na vida adulta (PN69/70). A exposição ao estresse promoveu menor ganho de massa corporal durante a adolescência, sendo o consumo de nicotina incapaz de alterar este parâmetro. Além disso, o estresse não afetou o consumo da solução de nicotina. Nosso modelo não foi capaz de alterar os parâmetros de ansiedade avaliados pelo teste do LCE. Entretanto, a exposição de estresse em concomitância com nicotina gerou hiperatividade ao final do período de exposição em ambos os sexos. Na avaliação do TS e do FST observamos alterações significativas somente após período de retirada. Após um curto período de abstinência pela nicotina, fêmeas apresentaram aumento do comportamento associado à depressão, tendo este efeito sido revertido pela exposição concomitante ao estresse. De forma contrária, na mesma idade, somente a exposição combinada promoveu aumento do comportamento associado à depressão em machos. Além disso, nossos resultados sugerem um aumento de sociabilidade no grupo submetido a exposição combinada após longo período de interrupção da exposição durante a vida adulta. O presente trabalho fornece evidências experimentais que indicam que nicotina e estresse interagem durante a adolescência resultando em alterações na resposta emocional durante o período de exposição e tardiamente, após a sua interrupção causando alterações que perduram até o início da vida adulta.
Resumo:
Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.
Resumo:
Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed
Resumo:
Humans, like other animals, alter their behavior depending on whether a threat is close or distant. We investigated spatial imminence of threat by developing an active avoidance paradigm in which volunteers were pursued through a maze by a virtual predator endowed with an ability to chase, capture, and inflict pain. Using functional magnetic resonance imaging, we found that as the virtual predator grew closer, brain activity shifted from the ventromedial prefrontal cortex to the periaqueductal gray. This shift showed maximal expression when a high degree of pain was anticipated. Moreover, imminence-driven periaqueductal gray activity correlated with increased subjective degree of dread and decreased confidence of escape. Our findings cast light on the neural dynamics of threat anticipation and have implications for the neurobiology of human anxiety-related disorders.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Resumo:
The relationship between pain and cognitive function is of theoretical and clinical interest, exemplified by observations that attention-demanding activities reduce pain in chronically afflicted patients. Previous studies have concentrated on phasic pain, which bears little correspondence to clinical pain conditions. Indeed, phasic pain is often associated with differential or opposing effects to tonic pain in behavioral, lesion, and pharmacological studies. To address how cognitive engagement interacts with tonic pain, we assessed the influence of an attention-demanding cognitive task on pain-evoked neural responses in an experimental model of chronic pain, the capsaicin-induced heat hyperalgesia model. Using functional magnetic resonance imaging (fMRI), we show that activity in the orbitofrontal and medial prefrontal cortices, insula, and cerebellum correlates with the intensity of tonic pain. This pain-related activity in medial prefrontal cortex and cerebellum was modulated by the demand level of the cognitive task. Our findings highlight a role for these structures in the integration of motivational and cognitive functions associated with a physiological state of injury. Within the limitations of an experimental model of pain, we suggest that the findings are relevant to understanding both the neurobiology and pathophysiology of chronic pain and its amelioration by cognitive strategies.
Resumo:
© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.
Resumo:
BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.
Resumo:
The nature of individual differences among children is an important issue in the study of human intelligence. There are close relation between intelligence and executive functions. Traditional theories, which are based mainly on the factor analysis, approach the problem only from the perspective of psychometrics. However, they do not study the relation of cognition and neurobiology. Some researchers try to explore the essential differences in intelligence from the basic cognitive level, by studying the relationship between executive function and intelligence. The aim of this study was to do the followings 1) to delineate and separate the executive function in children into measurable constructs; 2) to establish the relationship between executive function and intelligence in children; 3) to find out the difference and its neural mechanism between intellectually-gifted and normal children’s executive function. The participants were 188 children aged 7-12 year old. There were 6 executive function tasks. The results were follows: 1) The latent variables analyses showed that there was no stable construct of executive function in 7-10 year old children. The executive function construct of 11-12 year old children could be separated into updating, inhibition and shifting. And they had grown to be more or less the same as adults in the executive function. There were only moderate correlations between the three types of executive function, but they were largely independent of each other. 2) The correlations between the indices of updating, inhibition, shifting and intelligence were different in 7-12 year old children. The older the age, the more the indices were related to intelligence. The updating and shifting were related to intelligence in 7-10 year old children. There were significant correlations between the updating, inhibition, shifting and intelligence in 11-12 year old children. The correlation between updating and intelligence was higher than the correlation between shifting and intelligence. Furthermore, in structural equation models controlling for the three executive functions correlations, updating was highly related to intelligence, but the relations of inhibition and shifting to intelligence were not significant. 3) Intellectually-gifted children performed better than normal children in executive function tasks. The neural mechanism differences between intellectually gifted and average children were indicated by ERP component P3. The present study helps us to understand the relationship between intelligence and executive function; and throws light on the issue of individual differences in intelligence. The present results can provide theoretical support for the development a culture-free intelligence test and a method to promote the development of intelligence. Our present study lends support to the neural efficient hypothesis.
Resumo:
Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons
Resumo:
The aim of this project is to integrate neuronal cell culture with commercial or in-house built micro-electrode arrays and MEMS devices. The resulting device is intended to support neuronal cell culture on its surface, expose specific portions of a neuronal population to different environments using microfluidic gradients and stimulate/record neuronal electrical activity using micro-electrode arrays. Additionally, through integration of chemical surface patterning, such device can be used to build neuronal cell networks of specific size, conformation and composition. The design of this device takes inspiration from the nervous system because its development and regeneration are heavily influenced by surface chemistry and fluidic gradients. Hence, this device is intended to be a step forward in neuroscience research because it utilizes similar concepts to those found in nature. The large part of this research revolved around solving technical issues associated with integration of biology, surface chemistry, electrophysiology and microfluidics. Commercially available microelectrode arrays (MEAs) are mechanically and chemically brittle making them unsuitable for certain surface modification and micro-fluidic integration techniques described in the literature. In order to successfully integrate all the aspects into one device, some techniques were heavily modified to ensure that their effects on MEA were minimal. In terms of experimental work, this thesis consists of 3 parts. The first part dealt with characterization and optimization of surface patterning and micro-fluidic perfusion. Through extensive image analysis, the optimal conditions required for micro-contact printing and micro-fluidic perfusion were determined. The second part used a number of optimized techniques and successfully applied these to culturing patterned neural cells on a range of substrates including: Pyrex, cyclo-olefin and SiN coated Pyrex. The second part also described culturing neurons on MEAs and recording electrophysiological activity. The third part of the thesis described integration of MEAs with patterned neuronal culture and microfluidic devices. Although integration of all methodologies proved difficult, a large amount of data relating to biocompatibility, neuronal patterning, electrophysiology and integration was collected. Original solutions were successfully applied to solve a number of issues relating to consistency of micro printing and microfluidic integration leading to successful integration of techniques and device components.
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.