937 resultados para neural network model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the performance of multilayer perceptron (MLP) and multivariate linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns from various top, yarn and processing parameters. The results indicated that the MLP model predicted yarn hairiness more accurately than the MLR model, and should have wide mill specific applications. On the basis of sensitivity analysis, the factors that affected yarn hairiness significantly included yarn twist, ring size, average fiber length (hauteur), fiber diameter and yarn count, with twist having the greatest impact on yarn hairiness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a Digital Performing Agent to be able to perform live with a human dancer, it would be useful for the agent to be able to contextualize the movement the dancer is performing and to have a suitable movement vocabulary with which to contribute to the performance. In this paper we will discuss our research into the use of Artificial Neural Networks (ANN) as a means of allowing a software agent to learn a shared vocabulary of movement from a dancer. The agent is able to use the learnt movements to form an internal representation of what the dancer is performing, allowing it to follow the dancer, generate movement sequences based on the dancer's current movement and dance independently of the dancer using a shared movement vocabulary. By combining the ANN with a Hidden Markov Model (HMM) the agent is able to recognize short full body movement phrases and respond when the dancer performs these phrases. We consider the relationship between the dancer and agent as a means of supporting the agent's learning and performance, rather than developing the agent's capability in a self-contained fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presented a novel approach to develop car following models using reactive agent techniques for mapping perceptions to actions. The results showed that the model outperformed the Gipps and Psychophysical family of car following models. The standing of this work is highlighted by its acceptance and publication in the proceedings of the International IEEE Conference on Intelligent Transportation Systems (ITS), which is now recognised as the premier international conference on ITS. The paper acceptance rate to this conference was 67 percent. The standing of this paper is also evidenced by its listing in international databases like Ei Inspec and IEEE Xplore. The paper is also listed in Google Scholar. Dr Dia co-authored this paper with his PhD student Sakda Panwai.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.