983 resultados para network representation
Resumo:
The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that spread in the space, which may 'hit' other sensors and are 'scattered' around. At each hit, the relay node forwards the received signal to its nearest neighbour through direction-selective relaying. The authors first derive the distribution that a relay path reaches a prescribed location after undergoing certain number of hops. Subsequently, a closed-form expression of the average received signal strength (RSS) at the destination can be computed as the summation of all signal echoes' energy. Finally, the effect of the anomalous diffusion exponent ß on the mean RSS in a WRSN is studied, for which it is found that the RSS scaling exponent e is given by (3ß-1)/ß. The results would provide useful insight into the design and deployment of large-scale WRSNs in future. © 2011 The Institution of Engineering and Technology.
Resumo:
Directional Modulation (DM) is a recently proposed technique for securing wireless communication. In this paper we point out that modulation-directionality is a consequence of varying the beamforming network, either in baseband or in the RF stage, at the information rate In order to formalize and extend on previous analysis and synthesis methods a new theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to obtain the necessary and sufficient con
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
This paper presents the application of a new metaheuristic algorithm to solve the transmission expansion planning problem. A simple heuristic, using a relaxed network model associated with cost perturbation, is applied to generate a set of high quality initial solutions with different topologies. The population is evolved using a multi-move path-relinking with the objective of finding minimum investment cost for the transmission expansion planning problem employing the DC representation. The algorithm is tested on the southern Brazilian system, obtaining the optimal solution for the system with better performance than similar metaheuristics algorithms applied to the same problem. ©2010 IEEE.
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.
Resumo:
Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. Methods: We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene expression profiles are actually different between the conditions, and the genes related to the identified changes are considered as possible off-targets of Gefitinib. Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on regulations more accurately than existing methods. By applying the proposed approach to the time series data on normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is known as a side effect of Gefitinib.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.