829 resultados para nerve injury
Resumo:
Alterations in sodium channel expression and function have been suggested as a key molecular event underlying the abnormal processing of pain after peripheral nerve or tissue injury. Although the relative contribution of individual sodium channel subtypes to this process is unclear, the biophysical properties of the tetrodotoxin-resistant current, mediated, at least in part, by the sodium channel PN3 (SNS), suggests that it may play a specialized, pathophysiological role in the sustained, repetitive firing of the peripheral neuron after injury. Moreover, this hypothesis is supported by evidence demonstrating that selective “knock-down” of PN3 protein in the dorsal root ganglion with specific antisense oligodeoxynucleotides prevents hyperalgesia and allodynia caused by either chronic nerve or tissue injury. In contrast, knock-down of NaN/SNS2 protein, a sodium channel that may be a second possible candidate for the tetrodotoxin-resistant current, appears to have no effect on nerve injury-induced behavioral responses. These data suggest that relief from chronic inflammatory or neuropathic pain might be achieved by selective blockade or inhibition of PN3 expression. In light of the restricted distribution of PN3 to sensory neurons, such an approach might offer effective pain relief without a significant side-effect liability.
Resumo:
Compelling evidence has accumulated over the last several years from our laboratory, as well as others, indicating that central hyperactive states resulting from neuronal plastic changes within the spinal cord play a critical role in hyperalgesia associated with nerve injury and inflammation. In our laboratory, chronic constriction injury of the common sciatic nerve, a rat model of neuropathic pain, has been shown to result in activation of central nervous system excitatory amino acid receptors and subsequent intracellular cascades including protein kinase C translocation and activation, nitric oxide production, and nitric oxide-activated poly(ADP ribose) synthetase activation. Similar cellular mechanisms also have been implicated in the development of tolerance to the analgesic effects of morphine. A recently observed phenomenon, the development of “dark neurons,” is associated with both chronic constriction injury and morphine tolerance. A site of action involved in both hyperalgesia and morphine tolerance is in the superficial laminae of the spinal cord dorsal horn. These observations suggest that hyperalgesia and morphine tolerance may be interrelated at the level of the superficial laminae of the dorsal horn by common neural substrates that interact at the level of excitatory amino acid receptor activation and subsequent intracellular events. The demonstration of interrelationships between neural mechanisms underlying hyperalgesia and morphine tolerance may lead to a better understanding of the neurobiology of these two phenomena in particular and pain in general. This knowledge may also provide a scientific basis for improved pain management with opiate analgesics.
Resumo:
Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.
Resumo:
To address the neurochemistry of the mechanisms that underlie the development of acute and persistent pain, our laboratory has been studying mice with deletions of gene products that have been implicated in nociceptive processing. We have recently raised mice with a deletion of the preprotachykinin-A gene, which encodes the peptides substance P (SP) and neurokinin A (NKA). These studies have identified a specific behavioral phenotype in which the animals do not detect a window of “pain” intensities; this window cuts across thermal, mechanical, and chemical modalities. The lowered thermal and mechanical withdrawal thresholds that are produced by tissue or nerve injury, however, were still present in the mutant mice. Thus, the behavioral manifestations of threshold changes in nociceptive processing in the setting of injury do not appear to require SP or NKA. To identify relevant neurochemical factors downstream of the primary afferent, we are also studying the dorsal horn second messenger systems that underlie the development of tissue and nerve injury-induced persistent pain states. We have recently implicated the γ isoform of protein kinase C (PKCγ) in the development of nerve injury-induced neuropathic pain. Acute pain processing, by contrast, is intact in the PKCγ-null mice. Taken together, these studies emphasize that there is a distinct neurochemistry of acute and persistent pain. Persistent pain should be considered a disease state of the nervous system, not merely a prolonged acute pain symptom of some other disease conditions.
Resumo:
Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons.
Resumo:
A via de acesso arterial é um importante sítio de complicações após a realização de procedimentos coronários invasivos. Dentre as estratégias para a redução de complicações vasculares, encontra-se estabelecida a eficácia da técnica radial. Os dispositivos de oclusão vascular propiciam maior conforto ao paciente, reduzindo o tempo de hemostasia e repouso no leito. Entretanto, a inconsistência de dados comprovando sua segurança limita sua adoção rotineira como estratégia para redução de complicações vasculares, requerendo evidências de estudos randomizados com metodologia adequada. O objetivo deste estudo foi comparar a incidência de complicações no sítio de punção arterial entre a técnica radial e a técnica femoral com utilização de Angio-Seal em pacientes com síndrome coronariana aguda sem supradesnível do segmento ST submetidos à estratégia invasiva precoce. Trata-se de um ensaio clínico unicêntrico, de não inferioridade, no qual duzentos e quarenta pacientes foram randomizados para a técnica radial ou técnica femoral com utilização de Angio-Seal. O objetivo primário foi a ocorrência de complicações no sítio de punção arterial até 30 dias após o procedimento, incluindo sangramento grave, hematoma >= 5 cm, hematoma retroperitoneal, síndrome compartimental, pseudoaneurisma, fístula arteriovenosa, infecção, isquemia de membro, oclusão arterial, lesão de nervo adjacente ou necessidade de reparo vascular cirúrgico. Em relação às características demográficas e clínicas, houve diferença apenas quanto ao gênero, com presença maior de pacientes do sexo feminino no grupo radial (33,3% versus 20,0%, p=0,020). Não se observaram diferenças entre os grupos quanto ao diagnóstico de admissão, alterações isquêmicas presentes no eletrocardiograma, elevação de marcadores de necrose miocárdica ou escores de risco, bem como quanto à farmacoterapia antitrombótica adjunta e características da intervenção coronária percutânea. A hemostasia foi obtida na totalidade dos procedimentos do grupo radial com a utilização da pulseira compressora seletiva TR Band e em 95% dos procedimentos realizados pela técnica femoral com o Angio-Seal (p=0,029). Exceto pela maior incidência de oclusão arterial no grupo radial comparado ao femoral, não houve diferenças entre os demais desfechos analisados. Segundo o teste de não inferioridade para complicações na via de acesso arterial aos 30 dias, verificou-se que a utilização do Angio-Seal não produziu resultados inferiores ao acesso radial, considerando-se a margem de 15% (12,5% versus 13,3%, diferença -0,83%, IC 95% -9,31 - 7,65, p para não inferioridade <0,001). Os resultados principais deste estudo demonstram que, em uma população de pacientes com diagnóstico de síndrome coronariana aguda sem supradesnível do segmento ST, submetida à estratificação de risco invasiva, a utilização do dispositivo de oclusão vascular Angio-Seal confere ao procedimento efetivado pelo acesso femoral inferioridade na incidência de complicações no sítio de punção arterial aos 30 dias quando comparado ao acesso radial.
Resumo:
A lesão do plexo braquial é considerada a alteração neural mais grave das extremidades. A principal causa é o trauma de alta energia, especialmente acidentes envolvendo veículos a motor. Por este motivo, as lesões traumáticas do plexo braquial são cada vez mais frequentes. O presente estudo avaliou a acurácia da ressonância magnética (RM) no diagnóstico das lesões traumáticas do plexo braquial no adulto, utilizando o achado intraoperatório como padrão-ouro. Também foi avaliada a acurácia da neurografia pesada em difusão (neurografia DW) em relação à RM convencional e a capacidade de diferenciação dos três tipos de lesão: avulsão, ruptura e lesão em continuidade. Trinta e três pacientes com história e diagnóstico clínico de lesão traumática do plexo braquial foram prospectivamente estudados por RM. Os achados obtidos pela RM sem e com o uso da neurografia DW, e os achados de exame clínico foram comparados com os achados intraoperatórios. A análise estatística foi feita com associação de significância de 5%. Observou-se alta correlação entre a RM com neurografia DW e a cirurgia (rs=0,79), e baixa correlação entre a RM convencional e a cirurgia (rs=0,41). A correlação interobservador foi maior para a RM com neurografia DW (rs = 0,94) do que para a RM sem neurografia DW (rs = 0,75). Os resultados de sensibilidade, acurácia e valor preditivo positivo foram acima de 95% para as RM com e sem neurografia DW no estudo de todo o plexo. As especificidades foram, em geral, maiores para a neurografia DW (p < 0,05). Em relação à diferenciação dos tipos de lesão, a RM com neurografia DW apresentou altas acurácias e sensibilidades no diagnóstico da avulsão/rotura, e alta especificidade no diagnóstico da lesão em continuidade. A acurácia da RM (93,9%) foi significativamente maior que a do exame clínico (76,5%) no diagnóstico das lesões de todo o plexo braquial (p < 0,05).
Resumo:
Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, and more recently, fiber-based scaffolds produced via the electrospinning have been garnering increasing interest, as it offers the opportunity for control over fiber composition, as well as fiber mesh porosity using a relatively simple experimental setup. All these attributes make electrospun fibers a new class of promising scaffolds for neural tissue engineering. Therefore, the purpose of this doctoral study is to investigate the use of the novel material PGD and its derivative PGDF for obtaining fiber scaffolds using the electrospinning. The performance of these scaffolds, combined with neural lineage cells derived from ESCs, was evaluated by the dissolvability test, Raman spectroscopy, cell viability assay, real time PCR, Immunocytochemistry, extracellular electrophysiology, etc. The newly designed collector makes it possible to easily obtain fibers with adequate length and integrity. The utilization of a solvent like ethanol and water for electrospinning of fibrous scaffolds provides a potentially less toxic and more biocompatible fabrication method. Cell viability testing demonstrated that the addition of gelatin leads to significant improvement of cell proliferation on the scaffolds. Both real time PCR and Immunocytochemistry analysis indicated that motor neuron differentiation was achieved through the high motor neuron gene expression using the metabolites approach. The addition of Fumaric acid into fiber scaffolds further promoted the differentiation. Based on the results, this newly fabricated electrospun fiber scaffold, combined with neural lineage cells, provides a potential alternate strategy for nerve injury repair.
Resumo:
Background: Acute lower extremity compartment syndrome (CS) is a condition that untreated causes irreversible nerve and muscle ischemia. Treatment by decompression fasciotomy without delay prevents permanent disability. The use of intracompartmental pressure (iCP) measurement in uncertain situations aids in diagnosis of severe leg pain. As an infrequent complication of lower extremity trauma, consequences of CS include chronic pain, nerve injury, and contractures. The purpose of this study was to observe the clinical and functional outcomes for patients with lower extremity CS after fasciotomy. Methods: Retrospective chart analysis for patients with a discharge diagnosis of CS was performed. Physical demographics, employment status, activity at time of injury, injury severity score, fracture types, pain scores, hours to fasciotomy, iCP, serum creatine kinase levels, wound treatment regimen, length of hospital stay, and discharge facility were collected. Lower extremity neurologic examination, pain scores, orthopedic complications, and employment status at 30 days and 12 months after discharge were noted. Results: One hundred twenty‑four patients were enrolled in this study. One hundred and eight patients were assessed at 12 months. Eighty‑one percent were male. Motorized vehicles caused 51% of injuries in males. Forty‑one percent of injuries were tibia fractures. Acute kidney injury occurred in 2.4%. Mean peak serum creatine kinase levels were 58,600 units/ml. Gauze dressing was used in 78.9% of nonfracture patients and negative pressure wound vacuum therapy in 78.2% of fracture patients. About 21.6% of patients with CS had prior surgery. Nearly 12.9% of patients required leg amputation. Around 81.8% of amputees were male. Sixty‑seven percent of amputees had associated vascular injuries. Foot numbness occurred in 20.5% of patients and drop foot palsy in 18.2%. Osteomyelitis developed in 10.2% of patients and fracture nonunion in 6.8%. About 14.7% of patients underwent further orthopedic surgery. At long‑term follow‑up, 10.2% of patients reported moderate lower extremity pain and 69.2% had returned to work. Conclusion: Escalation in leg pain and changes in sensation are the cardinal signs for CS rather than reliance on assessing for firm compartments and pressures. The severity of nerve injury worsens with the delay in performing fasciotomy. Standardized diagnostic protocols and wound treatment strategies will result in improved outcomes from this complication.
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, and more recently, fiber-based scaffolds produced via the electrospinning have been garnering increasing interest, as it offers the opportunity for control over fiber composition, as well as fiber mesh porosity using a relatively simple experimental setup. All these attributes make electrospun fibers a new class of promising scaffolds for neural tissue engineering. Therefore, the purpose of this doctoral study is to investigate the use of the novel material PGD and its derivative PGDF for obtaining fiber scaffolds using the electrospinning. The performance of these scaffolds, combined with neural lineage cells derived from ESCs, was evaluated by the dissolvability test, Raman spectroscopy, cell viability assay, real time PCR, Immunocytochemistry, extracellular electrophysiology, etc. The newly designed collector makes it possible to easily obtain fibers with adequate length and integrity. The utilization of a solvent like ethanol and water for electrospinning of fibrous scaffolds provides a potentially less toxic and more biocompatible fabrication method. Cell viability testing demonstrated that the addition of gelatin leads to significant improvement of cell proliferation on the scaffolds. Both real time PCR and Immunocytochemistry analysis indicated that motor neuron differentiation was achieved through the high motor neuron gene expression using the metabolites approach. The addition of Fumaric acid into fiber scaffolds further promoted the differentiation. Based on the results, this newly fabricated electrospun fiber scaffold, combined with neural lineage cells, provides a potential alternate strategy for nerve injury repair.^
Resumo:
Introduction: Impacted knife injuries in the maxillofacial region are rare and infrequently reported. In cases of injury involving orbit or eye, these reports are even rarer. Discussion: Damage to the orbital contents may result in a rupture of the globe, extraocular muscle injury, lacrimal gland damage, and others. Orbital foreign bodies are not only difficult to detect, and clinical features vary according to its size, characteristics, shape, penetrating method, and site. In this report, a case of abducens nerve palsy after orbitoethmoidal knife injury is presented. © 2010 Springer-Verlag.
Resumo:
Objective: To evaluate the factors influencing the results of ulnar nerve neurotization at the motor branch of the brachii biceps muscle, aiming at the restoration of elbow flexion in patients with brachial plexus injury. Methods: 19 patients, with 18 men and 1 woman, mean age 28.7 years. Eight patients had injury to roots C5-C6 and 11, to roots C5-C6-C7. The average time interval between injury and surgery was 7.5 months. Four patients had cervical fractures associated with brachial plexus injury. The postoperative follow-up was 15.7 months. Results: Eight patients recovered elbow flexion strength MRC grade 4; two, MRC grade 3 and nine, MRC <3. There was no impairment of the previous ulnar nerve function. Conclusion: The surgical results of ulnar nerve neurotization at the motor branch of brachii biceps muscle are dependent on the interval between brachial plexus injury and surgical treatment, the presence of associated fractures of the cervical spine and occipital condyle, residual function of the C8-T1 roots after the injury and the involvement of the C7 root. Signs of reinnervation manifested up to 3 months after surgery showed better results in the long term. Level of Evidence: IV, Case Series.
Resumo:
Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.