992 resultados para neodymium : YAG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. Purpose: To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Methods: Sixty human third molars were employed to obtain discs (congruent to 1 mm thick) that were randomly assigned to six groups (n = 10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm. and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Results: Laser irradiation at 11 and 12 min provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Conclusions: Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the influence of energy and pulse repetition rate of Er:YAG laser on the enamel ablation ability and substrate morphology. Methods: Fifteen crowns of molars were sectioned in four fragments, providing 60 samples, which were ground to flatten the enamel surface. The initial mass was obtained by weighing the fragments. The specimens were hydrated for I h, fixed, and a 3-mm-diameter area was delimited. Twelve groups were randomly formed according to the combination of laser energies (200, 250, 300, or 350 mJ) and pulse repetition rates (2, 3, or 4 Hz). The final mass was obtained and mass loss was calculated by the difference between the initial and final mass. The specimens were prepared for SEM. Data were submitted to ANOVA and Scheffe test. Results: The 4 Hz frequency resulted in higher mass loss and was statistically different from 2 and 3 Hz (p < 0.05). The increase of frequency produced more melted areas, cracks, and unselective and deeper ablation. The 350 mJ energy promoted greater mass loss, similar to 300 mJ. Conclusions: The pulse repetition rate influenced more intensively the mass loss and morphological alteration. Among the tested parameters, 350 mJ/3 Hz improved the ability of enamel ablation with less surface morphological alterations. (C) 2007 Wiley Periodicals, Inc. J Biomed Mater Res.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate in vitro the influence of water flow rate on shear bond strength of a resin composite to enamel and dentin after Er:YAG cavity preparation. Methods: Ten bovine incisors were selected and roots removed. Crowns were sectioned in four pieces, resulting in 40 samples that were individually embedded in polyester resin (n=10), and ground to plane the enamel and expose the dentin. The bonding site was delimited and samples were randomly assigned according to cavity preparation: (1) Er:YAG/1.0 mL/minute; (2) Er:YAG/1.5 mL/minute; (3) Er:YAG/2.0 mL/minute and (4) High speed handpiece/bur (control group). Samples were fixed to a metallic device, where composite resin cylinders were prepared. Subsequently, they were stored for 24 hours and subjected to a shear bond strength test (500N at 0.5 mm/minute). Results: Means (MPa) were: enamel: 1: 12.8; 2: 16.8; 3: 17.5; 4: 36.0 and Dentin: 1: 13.6; 2: 18.7; 3: 12.1; 4: 21.3. Data were submitted to ANOVA and Tukey`s test. Adhesion to enamel was more efficient than for dentin. The cavities prepared with conventional bur (control) presented higher statistically significant bond strength values (P<0.05) than for Er:YAG laser for both enamel and dentin. No significant differences were observed between water flow rates employed during enamel ablation. For dentin, the shear bond strength of 2.0 mL/minute water flow rate was lower than for 1.5 mL/minute and 1.0 mL/minute rates. The Er:YAG laser adversely affected shear bond strength of resin composite to both enamel and dentin, regardless of the water flow rate used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nd:YAG laser efficacy associated with conventional treatment for bacterial reduction has been investigated throughout literature. The purpose of this study was to evaluate the bacterial reduction after Nd:YAG laser irradiation associated with scaling and root planning in class II furcation defects in patients with chronic periodontitis. Thirty-four furcation lesions were selected from 17 subjects. The control group received conventional treatment, and the experimental group received the same treatment followed by Nd:YAG laser irradiation (100 mJ/pulse; 15 Hz; 1.5 W, 60 s, 141.5 J/cm(2)). Both treatments resulted in improvements of most clinical parameters. A significant reduction of colony forming unit (CFU) of total bacteria number was observed in both groups. The highest reduction was noted in the experimental group immediately after the treatment. The number of dark pigmented bacteria and the percentage of patients with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans reduced immediately after the treatment and returned to values close to the initial ones 6 weeks after the baseline for both groups. The Nd:YAG laser associated with conventional treatment promoted significant bacterial reduction in class II furcation immediately after irradiation, although this reduction was not observed 6 weeks after the baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the structural evolution of Y(0.9)Er(0.1)Al(3)(BO(3))(4) nanopowders using two soft chemistry routes, the sol-gel and the polymeric precursor methods. Differential scanning calorimetry, differential thermal analyses, thermogravimetric analyses, X-ray diffraction, Fourier-transform infrared, and Raman spectroscopy techniques have been used to study the chemical reactions between 700 and 1200 degrees C temperature range. From both methods the Y(0.9)Er(0.1)Al(3)(BO(3))(4) (Er:YAB) solid solution was obtained almost pure when the powdered samples were heat treated at 1150 degrees C. Based on the results, a schematic phase formation diagram of Er:YAB crystalline solid solution was proposed for powders from each method. The Er:YAB solid solution could be optimized by adding a small amount of boron oxide in excess to the Er:YAB nominal composition. The nanoparticles are obtained around 210 nm. Photoluminescence emission spectrum of the Er:YAB nanocrystalline powders was measured on the infrared region and the Stark components of the (4)I(13/2) and (4)I(15/2) levels were determined. Finally, for the first time the Raman spectrum of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline phase is also presented. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the structural and spectroscopy characterization of poly(styrene sulfonate) (PSS) films doped with neodymium (Nd) ions. Nd-PSS films were processed using the acid of poly(styrene sulfonate) - H-PSS and neodymium nitrate - Nd(NO(3))(3); the maximum incorporation of Nd ions in the polymeric matrix was equal 19.3%. The absorption in the UV-Vis-NIR spectral region presents typical electronic transitions of Nd 3, ions, with well resolved peaks. The infrared spectra present the transition bands of PSS with characteristic line shape broadening, and the presence of vibrational modes of N-O groups in the range of 1400-720 cm(-1), prove the permanence of Nd(NO(3))(x), with x = 1, 2 and/or 3. in the H-PSS matrix. UV-Vis site selective photoluminescence data indicate that the incorporation of Nd 31 introduces a blue shift in PSS emission (325-800 nm), decreasing the interaction between adjacent PSS lateral groups (aromatic rings). Nd(3+) reabsorption and energy transfer effects between the PSS matrix and Nd(3+) were also observed. The IR emission of Nd-PSS films at 1076 rim ((4)F(3/2) -> (4)I(11/2)) present constant efficiency, independent on Nd(3+) concentration. The Judd-Ofelt theory was employed to analyze radiative properties. The excitation spectra prove the energy transfer between the polymeric matrix and Nd(3+). Complex impedance data was used to probe relaxation processes during the charge transport within the polymeric matrix. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proposição: avaliar histologicamente o reparo ósseo, especialmente a velocidade de cicatrização, após ostectomias a fresa cirúrgica e a laser de Er:YAG, sem contato, em diferentes intensidades de energia, in vivo. Materiais e método: 20 ratos (Novergicus Cepa Wistar), divididos em cinco grupos de quatro animais, foram submetidos a ostectomias da cortical óssea do corpo mandibular a fresa cirúrgica e a laser de Er:YAG (400 mJ/6 Hz), sem contato, no lado direito; no lado esquerdo foram realizadas ostectomias a laser de Er:YAG nas intensidades de 350 mJ/6 Hz e 300 mJ/6 Hz, sem contato. O laser foi aplicado sob irrigação constante. Foi utilizada matriz metálica para padronização das cavidades. Os tempos cirúrgicos foram sete, 14, 45, 60 e 90 dias pós-operatórios, e os espécimens analisados ao microscópio óptico. Resultados: as ostectomias a fresa cirúrgica apresentaram reparo ósseo a partir do endósteo cortical e do trabeculado remanescente. Aos 45 dias, observou-se o restabelecimento cortical, e após remodelação óssea. O reparo ósseo após irradiação a laser apresentou neoformação óssea a partir da superfície externa e endósteo corticais. Áreas de dano térmico foram verificadas nas três condições de irradiação, limitando-se a superfície. Estas áreas não foram mais evidenciadas aos 60 dias pós-operatórios. Neste período e adiante, verificou-se remodelação óssea. Conclusão: o reparo ósseo após ostectomias a laser de Er:YAG ocorreu através de corredores de cicatrização. O reparo ósseo após ostectomias a fresa cirúrgica tende a forma centrífuga. Já o reparo ósseo após irradiação a laser de Er:YAG tende a forma centrípeta. A velocidade de reparo foi maior nas ostectomias a fresa cirúrgica do que nas ostectomias a laser. Aos 90 dias, verificou-se reparo ósseo comparativamente homogêneo nas quatro condições propostas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proposição: avaliar a aplicação da tecnologia laser de Er:YAG em tecido ósseo alveolar. Materiais e Método: estudo experimental in vivo, com a amostragem selecionada de forma aleatória, randomizada, com um grupo teste e outro controle. Constou de 20 ratos, da espécie Rattus novergicus albinus, cepa Wistar, machos, subdivididos em quatro grupos, correspondendo aos tempos experimentais de sete, 14, 21 e 45 dias. Todos os animais foram grupo teste no lado direito e controle do lado esquerdo. Foi avaliado o efeito do uso de três pulsos de laser de Er:YAG à energia de 500 mJ/pulso e freqüência de 2 Hz, conduzido por fibra ótica, no modo de entrega em contato, através da análise das fases histológicas do reparo ósseo após extração cirúrgica do primeiro molar superior dos ratos. Foram avaliadas a qualidade e a velocidade do reparo ósseo alveolar. Resultados: aos sete dias, observou-se intensa atividade osteoblástica no grupo teste. As trabéculas apresentaram-se dirigidas no sentido ascendente e convergente. Ao contrário, o grupo controle apresentou neoformação óssea somente aos 14 dias, com trabéculas em forma circunvolutiva e ascendente. Aos 14 dias no grupo teste e aos 21 dias no grupo controle, evidenciou-se semelhança na atividade osteoblástica-osteoclástica, em diferentes fases de neoformação e remodelação óssea. No grupo teste, aos 21 dias, encontrou-se tecido ósseo maduro. Aos 45 dias, ambos os grupos apresentaram-se com tecido ósseo lamelar maduro do tipo esponjoso. Conclusão: após o uso de laser de Er:YAG, nos parâmetros utilizados, não foram observadas áreas de ablação e necrose teciduais, em todos os tempos experimentais; o reparo ósseo alveolar após o uso de laser Er:YAG, nos parâmetros utilizados, ocorreu mais rapidamente em comparação ao controle, principalmente entre os sete e 21 dias pós-operatórios; não houve diferença no reparo ósseo alveolar final, aos 45 dias pós-operatórios, em relação ao controle; e o modelo de cirurgia experimental é válido para pesquisas futuras em reparo ósseo alveolar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a pulsed Nd:YAG laser was used to join Monel 400 thin foil with 100 mu m thickness. Pulse energy was varied from 1.0 to 2.25J at small increments of 0.25J. The macro and microstructures were analyzed by optical microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the bottom foil dilution rate, it is possible to weld Monel 400 thin foil. The process appeared to be very sensitive to the gap between couples.