974 resultados para navier-stokes equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正> 引言 最近十多年,简化NS方程(以下记为SNS)的研究和计算有长足进展。由于在NS方程组中对粘性项的取舍不同,因而有几种不同的简化NS方程组,究竟哪种形式更合理,是需进一步探讨的一个问题。文献[1]利用原始NS方程及三种不同的简化NS方程组,对球的超音速绕流数值试验表明,其效果是不一样的。文献[3]也指出,如果SNS方程组的形式选择不当,会带来不可忽略的误差。从二维研究不难看出,目前广泛采用的三维SNS方程即粘性激波层方程组(VSL)及抛物化NS方程组(PNS),都不是最合理的简化形式。本文提出三维NS方程组的一种最好形式,称为修正的PNS方程组(记为MPNS),并论证它的合理性及精确度。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ADI方法常被用来计算不可压缩Navier-Stokes方程。在处理涡度方程的非线性项和涡度在壁面上的条件时,通常采用滞后的方法对涡度方程和流函数方程分别求解。然而,非线性项的滞后破坏了ADI方法的完全二阶精度;涡度方程和流函数方程分别求解减弱了两个方程的耦合性;涡度壁面条件的滞后则破坏了方法的完全隐式。本文在应用ADI方法求解涡度方程和流函数方程时应用了一种交替线性化的技术,对涡度方程和流函数方程耦合求解,内点和边界点上的涡度和流函数值同时求出。因此,ADI方法保持了完全的二阶精度,避免了上面所提到的问题。作者应用这一方法计算了雷诺数R_θ等于1,10,100,500,1000时的二维方腔流动(空间步长h=1/20)。计算结果表明:这一方法保持了通常ADI方法的优点,可以应用大的时间步长。最后补充计算了雷诺数R_θ=2000的二维方腔流动。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正> 简化N-S方程组具有抛物-双曲方程组的特性,对定常情况可用向前推进的计算方法,要比数值求解椭圆型完全N-S方程组简单得多;求解简化N-S方程组能够同时算出无粘外部流和粘性边界层流,理论上要比先算无粘流、然后再算粘性边界层流的常规方法

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文对二绝简化Navier-stokes方程组作了定性分忻,作者认为当流动的切向速度分量u

Relevância:

100.00% 100.00%

Publicador:

Resumo:

对于高Re数流动计算,在通常二阶精度NS差分格式和网格数条件下,存在某些粘性项落入修正微分方程截断误差项的问题。这类NS方程组计算实际是计算某种简化NS方程组,而且重复计算误差物理粘性项既浪费机时和内存,误差积累又会对数值解产生不可预测的影响。避免上述缺陷的办法一个是提高NS差分格式的精度,另一个是丢掉可能落入截断误差项的物理粘性项,把NS方程组简化为广义NS方程组。广义NS计算避免了误差物理粘性项误差积累对数值解的不可知影响,又可节省内存和机时,对高Re数流体工程计算很有好处。利用广义NS方程组计算超声速绕前向和后向台阶流动的结果表明:广义NS方程组与NS方程组的数值结果很好相符。

Relevância:

100.00% 100.00%

Publicador: