952 resultados para nanoparticle precipitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is focused on the effects of energetic particle precipitation of solar or magnetospheric origin on the polar middle atmosphere. The energetic charged particles have access to the atmosphere in the polar areas, where they are guided by the Earth's magnetic field. The particles penetrate down to 20-100 km altitudes (stratosphere and mesosphere) ionising the ambient air. This ionisation leads to production of odd nitrogen (NOx) and odd hydrogen species, which take part in catalytic ozone destruction. NOx has a very long chemical lifetime during polar night conditions. Therefore NOx produced at high altitudes during polar night can be transported to lower stratospheric altitudes. Particular emphasis in this work is in the use of both space and ground based observations: ozone and NO2 measurements from the GOMOS instrument on board the European Space Agency's Envisat-satellite are used together with subionospheric VLF radio wave observations from ground stations. Combining the two observation techniques enabled detection of NOx enhancements throughout the middle atmosphere, including tracking the descent of NOx enhancements of high altitude origin down to the stratosphere. GOMOS observations of the large Solar Proton Events of October-November 2003 showed the progression of the SPE initiated NOx enhancements through the polar winter. In the upper stratosphere, nighttime NO2 increased by an order of magnitude, and the effect was observed to last for several weeks after the SPEs. Ozone decreases up to 60 % from the pre-SPE values were observed in the upper stratosphere nearly a month after the events. Over several weeks the GOMOS observations showed the gradual descent of the NOx enhancements to lower altitudes. Measurements from years 2002-2006 were used to study polar winter NOx increases and their connection to energetic particle precipitation. NOx enhancements were found to occur in a good correlation with both increased high-energy particle precipitation and increased geomagnetic activity. The average wintertime polar NOx was found to have a nearly linear relationship with the average wintertime geomagnetic activity. The results from this thesis work show how important energetic particle precipitation from outside the atmosphere is as a source of NOx in the middle atmosphere, and thus its importance to the chemical balance of the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of sub-microscopic precipitation in an Al-Zn-Mg alloy selected for its maximum response to ageing has been studied by a standardized oxide-replica technique in a 100 kV. Philips Electron Microscope. Contrary to earlier conclusions, examination of the oxide replicas has been shown to reveal details of the precipitation process almost as clearly as the thin-foil transmission technique. The reported formation of spherical Guinier-Preston zones followed by the development of a Widmanstaetten pattern of precipitated platelets has been confirmed. The zones have, however, been shown to grow into the platelets and not to dissolve in the matrix as reported earlier. The precipitation process has been correlated with the Hardness/Ageing Time curve and the structure of the precipitates has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared a new nanocomposite polymer electrolyte using nanoparticles of hydrotalcite, an anionic clay, as the filler. Hydrotalcite has the chemical composition [M-1-x(2+) M-x(3+) (OH)(2)](x+) [A(x/n)(n-)center dot mH(2)O] where M2+ is a divalent cation (e.g. Mg2+, Ni2+, Co2+,etc.) and M3+ is a trivalent cation (e.g. Al3+, Fe3+, Cr3+, etc.). A(n-) is an anion intercalated between the positively charged double hydroxide layers. The nanoparticles of [Mg0.67Al0.33 (OH)(2)] [(CO3)(0.17)center dot mH(2)O] were prepared by the co-precipitation method (average particle size as observed by TEM similar to 50 nm) and were doped into poly(ethylene glycol) PEG (m.w.2000) complexed with LiCIO4. Samples with different wt.% of hydrotalcite were prepared and characterized using XRD, DSC, TGA, impedance spectroscopy and NMR. Ionic conductivity for the pristine sample, similar to 7.3 x 10(-7) S cm(-1), was enhanced to a maximum of = 1.1 x 10(-5) S cm(-1) for 3.6 wt.% nanoparticle doped sample. We propose that the enhancement of ionic conductivity is caused by percolation effects of the high conductivity paths provided by interfaces between the nanoparticles and the polymer electrolyte. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance (EQCM) has been used to study the electrochemical precipitation of Mn(OH)(2) on a Au crystal and its capacitance properties. From the EQCM data, it is inferred that NO3- ions get adsorbed on the Au crystal and then undergo reduction, resulting in an increase in pH near the electrode surface. Precipitation of Mn2+ occurs as Mn(OH)(2), with an increase in mass of the Au crystal. Mn(OH)(2) undergoes oxidation to MnO2, which exhibits electrochemical supercapacitor behavior on subjecting to electrochemical cycling in a Na2SO4 electrolyte. EQCM data indicate mass variations corresponding to surface insertion/extraction of Na+ ions during discharge/charge cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3479665] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple template-free method for the synthesis of interconnected hierarchical porous palladium nanostructures by controlling the aggregation of nanoparticles in organic media. The interaction between the nanoparticles is tuned by varying the dielectric constant of the medium consistent with DLVO calculations. The reaction products range from discrete nanoparticles to compact porous clusters with large specific surface areas. The nanoclusters exhibit hierarchical porosity and are found to exhibit excellent activity towards the reduction of 4-nitrophenol into 4-aminophenol and hydrogen oxidation. The method opens up possibilities for synthesizing porous clusters of other functional inorganics in organic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.