963 resultados para multisensory statistical learning
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação Especialidade em Tecnologias, Redes e Multimédia na Educação e Formação
Resumo:
Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.
Resumo:
Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.
Resumo:
This review article summarizes evidence that multisensory experiences at one point in time have long-lasting effects on subsequent unisensory visual and auditory object recognition. The efficacy of single-trial exposure to task-irrelevant multisensory events is its ability to modulate memory performance and brain activity to unisensory components of these events presented later in time. Object recognition (either visual or auditory) is enhanced if the initial multisensory experience had been semantically congruent and can be impaired if this multisensory pairing was either semantically incongruent or entailed meaningless information in the task-irrelevant modality, when compared to objects encountered exclusively in a unisensory context. Processes active during encoding cannot straightforwardly explain these effects; performance on all initial presentations was indistinguishable despite leading to opposing effects with stimulus repetitions. Brain responses to unisensory stimulus repetitions differ during early processing stages (-100 ms post-stimulus onset) according to whether or not they had been initially paired in a multisensory context. Plus, the network exhibiting differential responses varies according to whether or not memory performance is enhanced or impaired. The collective findings we review indicate that multisensory associations formed via single-trial learning exert influences on later unisensory processing to promote distinct object representations that manifest as differentiable brain networks whose activity is correlated with memory performance. These influences occur incidentally, despite many intervening stimuli, and are distinguishable from the encoding/learning processes during the formation of the multisensory associations. The consequences of multisensory interactions that persist over time to impact memory retrieval and object discrimination.
Resumo:
Background: A form of education called Interprofessional Education (IPE) occurs when two or more professions learn with, from and about each other. The purpose of IPE is to improve collaboration and the quality of care. Today, IPE is considered as a key educational approach for students in the health professions. IPE is highly effective when delivered in active patient care, such as in clinical placements. General internal medicine (GIM) is a core discipline where hospital-based clinical placements are mandatory for students in many health professions. However, few interprofessional (IP) clinical placements in GIM have been implemented. We designed such a placement. Placement design: The placement took place in the Department of Internal Medicine at the CHUV. It involved students from nursing, physiotherapy and medicine. The students were in their last year before graduation. Students formed teams consisting of one student from each profession. Each team worked in the same unit and had to take care of the same patient. The placement lasted three weeks. It included formal IP sessions, the most important being facilitated discussions or "briefings" (3x/w) during which the students discussed patient care and management. Four teams of students eventually took part in this project. Method: We performed a type of evaluation research called formative evaluation. This aimed at (1) understanding the educational experience and (2) assessing the impact of the placement on student learning. We collected quantitative data with pre-post clerkship questionnaires. We also collected qualitative data with two Focus Groups (FG) discussions at the end of the placement. The FG were audiotaped and transcribed. A thematic analysis was then performed. Results: We focused on the qualitative data, since the quantitative data lacked of statistical power due to the small numbers of students (N = 11). Five themes emerged from the FG analysis: (1) Learning of others' roles, (2) Learning collaborative competences, (3) Striking a balance between acquiring one's own professional competences and interprofessional competences, (4) Barriers to apply learnt IP competences in the future and (5) Advantages and disadvantages of IP briefings. Conclusions: Our IP clinical placement in GIM appeared to help students learn other professionals' roles and collaborative skills. Some challenges (e.g. finding the same patient for each team) were identified and will require adjustments.
Resumo:
In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.
Resumo:
Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.
Resumo:
The purpose of the study is: (1) to describe how nursing students' experienced their clinical learning environment and the supervision given by staff nurses working in hospital settings; and (2) to develop and test an evaluation scale of Clinical Learning Environment and Supervision (CLES). The study has been carried out in different phases. The pilot study (n=163) explored the association between the characteristics of a ward and its evaluation as a learning environment by students. The second version of research instrument (which was developed by the results of this pilot study) were tested by an expert panel (n=9 nurse teachers) and test-retest group formed by student nurses (n=38). After this evaluative phase, the CLES was formed as the basic research instrument for this study and it was tested with the Finnish main sample (n=416). In this phase, a concurrent validity instrument (Dunn & Burnett 1995) was used to confirm the validation process of CLES. The international comparative study was made by comparing the Finnish main sample with a British sample (n=142). The international comparative study was necessary for two reasons. In the instrument developing process, there is a need to test the new instrument in some other nursing culture. Other reason for comparative international study is the reflecting the impact of open employment markets in the European Union (EU) on the need to evaluate and to integrate EU health care educational systems. The results showed that the individualised supervision system is the most used supervision model and the supervisory relationship with personal mentor is the most meaningful single element of supervision evaluated by nursing students. The ward atmosphere and the management style of ward manager are the most important environmental factors of the clinical ward. The study integrates two theoretical elements - learning environment and supervision - in developing a preliminary theoretical model. The comparative international study showed that, Finnish students were more satisfied and evaluated their clinical placements and supervision with higher scores than students in the United Kingdom (UK). The difference between groups was statistical highly significant (p= 0.000). In the UK, clinical placements were longer but students met their nurse teachers less frequently than students in Finland. Arrangements for supervision were similar. This research process has produced the evaluation scale (CLES), which can be used in research and quality assessments of clinical learning environment and supervision in Finland and in the UK. CLES consists of 27 items and it is sub-divided into five sub-dimensions. Cronbach's alpha coefficient varied from high 0.94 to marginal 0.73. CLES is a compact evaluation scale and user-friendliness makes it suitable for continuing evaluation.
Resumo:
Minimax lower bounds for concept learning state, for example, thatfor each sample size $n$ and learning rule $g_n$, there exists a distributionof the observation $X$ and a concept $C$ to be learnt such that the expectederror of $g_n$ is at least a constant times $V/n$, where $V$ is the VC dimensionof the concept class. However, these bounds do not tell anything about therate of decrease of the error for a {\sl fixed} distribution--concept pair.\\In this paper we investigate minimax lower bounds in such a--stronger--sense.We show that for several natural $k$--parameter concept classes, includingthe class of linear halfspaces, the class of balls, the class of polyhedrawith a certain number of faces, and a class of neural networks, for any{\sl sequence} of learning rules $\{g_n\}$, there exists a fixed distributionof $X$ and a fixed concept $C$ such that the expected error is larger thana constant times $k/n$ for {\sl infinitely many n}. We also obtain suchstrong minimax lower bounds for the tail distribution of the probabilityof error, which extend the corresponding minimax lower bounds.
Resumo:
We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.
Resumo:
We perceive our environment through multiple sensory channels. Nonetheless, research has traditionally focused on the investigation of sensory processing within single modalities. Thus, investigating how our brain integrates multisensory information is of crucial importance for understanding how organisms cope with a constantly changing and dynamic environment. During my thesis I have investigated how multisensory events impact our perception and brain responses, either when auditory-visual stimuli were presented simultaneously or how multisensory events at one point in time impact later unisensory processing. In "Looming signals reveal synergistic principles of multisensory integration" (Cappe, Thelen et al., 2012) we investigated the neuronal substrates involved in motion detection in depth under multisensory vs. unisensory conditions. We have shown that congruent auditory-visual looming (i.e. approaching) signals are preferentially integrated by the brain. Further, we show that early effects under these conditions are relevant for behavior, effectively speeding up responses to these combined stimulus presentations. In "Electrical neuroimaging of memory discrimination based on single-trial multisensory learning" (Thelen et al., 2012), we investigated the behavioral impact of single encounters with meaningless auditory-visual object parings upon subsequent visual object recognition. In addition to showing that these encounters lead to impaired recognition accuracy upon repeated visual presentations, we have shown that the brain discriminates images as soon as ~100ms post-stimulus onset according to the initial encounter context. In "Single-trial multisensory memories affect later visual and auditory object recognition" (Thelen et al., in review) we have addressed whether auditory object recognition is affected by single-trial multisensory memories, and whether recognition accuracy of sounds was similarly affected by the initial encounter context as visual objects. We found that this is in fact the case. We propose that a common underlying brain network is differentially involved during encoding and retrieval of images and sounds based on our behavioral findings. - Nous percevons l'environnement qui nous entoure à l'aide de plusieurs organes sensoriels. Antérieurement, la recherche sur la perception s'est focalisée sur l'étude des systèmes sensoriels indépendamment les uns des autres. Cependant, l'étude des processus cérébraux qui soutiennent l'intégration de l'information multisensorielle est d'une importance cruciale pour comprendre comment notre cerveau travail en réponse à un monde dynamique en perpétuel changement. Pendant ma thèse, j'ai ainsi étudié comment des événements multisensoriels impactent notre perception immédiate et/ou ultérieure et comment ils sont traités par notre cerveau. Dans l'étude " Looming signals reveal synergistic principles of multisensory integration" (Cappe, Thelen et al., 2012), nous nous sommes intéressés aux processus neuronaux impliqués dans la détection de mouvements à l'aide de l'utilisation de stimuli audio-visuels seuls ou combinés. Nos résultats ont montré que notre cerveau intègre de manière préférentielle des stimuli audio-visuels combinés s'approchant de l'observateur. De plus, nous avons montré que des effets précoces, observés au niveau de la réponse cérébrale, influencent notre comportement, en accélérant la détection de ces stimuli. Dans l'étude "Electrical neuroimaging of memory discrimination based on single-trial multisensory learning" (Thelen et al., 2012), nous nous sommes intéressés à l'impact qu'a la présentation d'un stimulus audio-visuel sur l'exactitude de reconnaissance d'une image. Nous avons étudié comment la présentation d'une combinaison audio-visuelle sans signification, impacte, au niveau comportementale et cérébral, sur la reconnaissance ultérieure de l'image. Les résultats ont montré que l'exactitude de la reconnaissance d'images, présentées dans le passé, avec un son sans signification, est inférieure à celle obtenue dans le cas d'images présentées seules. De plus, notre cerveau différencie ces deux types de stimuli très tôt dans le traitement d'images. Dans l'étude "Single-trial multisensory memories affect later visual and auditory object recognition" (Thelen et al., in review), nous nous sommes posés la question si l'exactitude de ia reconnaissance de sons était affectée de manière semblable par la présentation d'événements multisensoriels passés. Ceci a été vérifié par nos résultats. Nous avons proposé que cette similitude puisse être expliquée par le recrutement différentiel d'un réseau neuronal commun.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.
Resumo:
Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.