944 resultados para motor disorder
Resumo:
Attention deficit/hyperactivity disorder (ADHD) has long been described in children who demonstrate developmentally inappropriate symptoms of inattention, impulsivity and motor restlessness. In adults, symptoms are known to persist and the validity of adult ADHD as an entity is now recognized. There is an associated high proportion of other serious psychiatric comorbidities, especially substance abuse, mood and anxiety disorders. Advances have been made into the aetiology and management of ADHD. Many of these focus on the dopamine and noradrenaline pathways.
Resumo:
Electropalatography (EPG) has been employed to measure speech articulation since the mid-1970s. This technique has predominately been used in experimental phonetic research and in the diagnosis and treatment of articulation disorders in children. However, there is a growing body of research employing EPG to diagnose and treat articulatory impairment associated with acquired motor speech disorder (MSD) in adults. The purpose of this paper was to (1) review the findings of studies pertaining to the assessment and treatment of MSDs in adults using EPG, (2) highlight current methodologies employed, and (3) discuss the potential limitations of EPG in the assessment and treatment of MSDs and examine directions for future applied research and treatment studies.
Resumo:
PURPOSE: The purpose of this study was to increase the understanding of the functional impact that coordination problems have during adolescence and early adult life. In particular, this study aimed to investigate the impact coordination deficits have on day-to-day functioning, activity levels, self-concept with respect to coordination, leisure pursuits, occupational types, accidents and injuries, as well as experiences learning to drive. RELEVANCE: This study may enable clinicians to identify at risk situations, such that appropriate prevention and targeting of treatment can occur. SUBJECTS: The participants involved in this study comprised two groups; 40 subjects previously diagnosed with DCD, and their matched controls. METHODS: Participants were initially contacted by mail for their consent to the study. Consenting participants were then contacted via telephone, and interviewed. ANALYSES: Data analysis was performed using SPSS. Chi squared analysis and Mann Whitney U test was also used to compare groups. RESULTS: During both age periods, the number of DCD subjects participating in sport was significantly less than the number of controls. Although in the 12-14 years age category, the two groups displayed similar results for the type of sport chosen, the 18 – 20 years age group, showed significant differences, with the number of DCD subjects participating in High level coordination activities, being significantly less than controls. Self-perception with respect to coordination was also significantly different amongst groups with more DCD subjects, having perceived themselves as being clumsy. Similarly, a significantly greater number of DCD subjects admitted to tripping over themselves regularly. Some differences have also been noted in the experiences of subjects learning to drive. First, the number of DCD subjects, who had difficulties learning to drive was significantly greater than controls. Second, a much greater number of Control subjects, compared to DCD subjects were successful in obtaining drivers license. Finally, also of interest is the 58% of DCD subjects who have experienced an accident whilst driving, compared to the 35% of controls. The last result of this study was that whilst there was no significant difference between groups, in the number of broken bones, dislocated joints, sprain, burns, stitches, or other significant injuries, the number of control subjects suffering muscle strains was significantly greater than the number of DCD subjects. CONCLUSION: The results of this study indicate that DCD has many implications on day-to-day functioning, both in adolescence and early adulthood. Findings have shown despite the significant sensory-motor deficits displayed by DCD subjects, the impact that this has on day-to-day functioning may be reduced by lifestyle modification.
Resumo:
This investigation aimed to pinpoint the elements of motor timing control that are responsible for the increased variability commonly found in children with developmental dyslexia on paced or unpaced motor timing tasks (Chapter 3). Such temporal processing abilities are thought to be important for developing the appropriate phonological representations required for the development of literacy skills. Similar temporal processing difficulties arise in other developmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD). Motor timing behaviour in developmental populations was examined in the context of models of typical human timing behaviour, in particular the Wing-Kristofferson model, allowing estimation of the contribution of different timing control systems, namely timekeeper and implementation systems (Chapter 2 and Methods Chapters 4 and 5). Research examining timing in populations with dyslexia and ADHD has been inconsistent in the application of stimulus parameters and so the first investigation compared motor timing behaviour across different stimulus conditions (Chapter 6). The results question the suitability of visual timing tasks which produced greater performance variability than auditory or bimodal tasks. Following an examination of the validity of the Wing-Kristofferson model (Chapter 7) the model was applied to time series data from an auditory timing task completed by children with reading difficulties and matched control groups (Chapter 8). Expected group differences in timing performance were not found, however, associations between performance and measures of literacy and attention were present. Results also indicated that measures of attention and literacy dissociated in their relationships with components of timing, with literacy ability being correlated with timekeeper variance and attentional control with implementation variance. It is proposed that these timing deficits associated with reading difficulties are attributable to central timekeeping processes and so the contribution of error correction to timing performance was also investigated (Chapter 9). Children with lower scores on measures of literacy and attention were found to have a slower or failed correction response to phase errors in timing behaviour. Results from the series of studies suggest that the motor timing difficulty in poor reading children may stem from failures in the judgement of synchrony due to greater tolerance of uncertainty in the temporal processing system.
Resumo:
Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1
Resumo:
Background : Developmental coordination disorder (DCD) is a prevalent neurodevelopmental disorder. Best practices include raising parents’ awareness and building capacity but few interventions incorporating these best practices are documented. Objective : To examine whether an evidence-based online module can increase the perceived knowledge and skills of parents of children with DCD, and lead to behavioural changes when managing their child’s health condition. Methods : A mixed-methods, before-after-follow-up design guided by the theory of planned behaviour was employed. Data about the knowledge, skills and behaviours of parents of children with DCD were collected using questionnaires prior to completing the module, immediately after, and three months later. One-way repeated measures ANOVAs and thematic analyses were performed on data as appropriate. Results : Fifty-eight participants completed all questionnaires. There was a significant effect of time on self-reported knowledge [F(2.00,114.00)=16.37, p=0.00] and skills [F(1.81,103.03)=51.37, p=0.00] with higher post- and follow-up scores than pre-intervention scores. Thirty-seven (65%) participants reported an intention to change behaviour postintervention; 29 (50%) participants had tried recommended strategies at follow-up. Three themes emerged to describe parents’ behavioural change: sharing information, trialing strategies and changing attitudes. Factors influencing parents’ ability to implement these behavioural changes included clear recommendations, time, and ‘right’ attitude. Perceived outcomes associated with the parental behavioural changes involved improvement in well-being for the children at school, at home, and for the family as a whole. Conclusions : The online module increased parents’ self-reported knowledge and skills in DCD management. Future research should explore its impacts on children’s outcomes long-term.
Resumo:
Evidence-based management of Developmental Coordination Disorder (DCD) in school-age children requires putting into practice the best and most current research findings, including evidence that early identification, self-management, prevention of secondary disability, and enhanced participation are the most appropriate foci of school-based occupational therapy. Partnering for Change (P4C) is a new school-based intervention based upon these principles that has been developed and evaluated in Ontario, Canada over an 8-year period. Our experience to date indicates that its implementation in schools is highly complex with involvement of multiple stakeholders across health and education sectors. In this paper, we describe and reflect upon our team’s experience in using community-based participatory action research, knowledge translation, and implementation science to transform evidence-informed practice with children who have DCD.
Resumo:
Background : Developmental coordination disorder (DCD) is a prevalent neurodevelopmental disorder. Best practices include raising parents’ awareness and building capacity but few interventions incorporating these best practices are documented. Objective : To examine whether an evidence-based online module can increase the perceived knowledge and skills of parents of children with DCD, and lead to behavioral changes when managing their child’s health condition. Methods : A mixed-methods, before-after design guided by the theory of planned behavior was employed. Data about the knowledge, skills and behaviors of parents of children with DCD were collected using questionnaires prior to completing the module, immediately after, and three months later. Paired T-tests, sensitivity analyses and thematic analyses were performed on data as appropriate. Results: One hundred-sixteen, 81 and 58 participants respectively completed the three questionnaires. For knowledge and skills, post- and follow-up scores were significantly higher than baseline scores (p<0.01). Fifty-two (64%) participants reported an intention to change behavior post-intervention and 29 (50%) participants had tried recommended strategies at follow-up. Three themes emerged to describe parents’ behavioral change: sharing information, trialing strategies and changing attitudes. Factors influencing parents’ ability to implement these behavioral changes included clear recommendations, time, and ‘right’ attitude. Perceived outcomes associated with the parental behavioral changes involved improvement in well-being for the children at school, at home, and for the family as a whole. Conclusions : The online module increased parents’ self-reported knowledge and skills in DCD management. Future research should explore its impacts on children’s long-term outcomes.