136 resultados para monosaccharide
Resumo:
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.
Resumo:
Abstract Sugarcane monosaccharides are reducing sugars, and classical analytical methodologies (Lane-Eynon, Benedict, complexometric-EDTA, Luff-Schoorl, Musson-Walker, Somogyi-Nelson) are based on reducing copper ions in alkaline solutions. In Brazil, certain factories use Lane-Eynon, others use the equipment referred to as “REDUTEC”, and additional factories analyze reducing sugars based on a mathematic model. The objective of this paper is to understand the relationship between variations in millivolts, mass and tenors of reducing sugars during the analysis process. Another objective is to generate an automatic model for this process. The work herein uses the equipment referred to as “REDUTEC”, a digital balance, a peristaltic pump, a digital camcorder, math programs and graphics programs. We conclude that the millivolts, mass and tenors of reducing sugars exhibit a good mathematical correlation, and the mathematical model generated was benchmarked to low-concentration reducing sugars (<0.3%). Using the model created herein, reducing sugars analyses can be automated using the new equipment.
Resumo:
La synthèse énantiosélective de la (+)-ambruticine S, un produit naturel antifongique a été effectuée au sein de notre groupe. Trois approches ont été développées pour la synthèse du fragment lactone (cycle A). Ces trois voies d’accès au cycle A ont pour intermédiaire commun le methyl α-D-glycopyranoside déjà porteur du diol requis et disponible commercialement à bon prix. Une désoxygénation de l’hydroxyle en C-4 et l’homologation d’un carbone de la chaine latérale en C-6 ont permis l’obtention du cycle lactonique A. Le deuxième projet est une collaboration entre le groupe Hanessian et ISIS Pharmaceuticals afin de développer de nouveaux oligonucléosides antisens. Les nucléosides antisens [4.3.0]-bicycliques cis et trans ont été synthétisés avec succès à partir d’un monosaccharide naturel commun, L-arabinose, porteur des stéréocentres requis. Un réaction clé d’allylation de Sakurai a permis d’obtenir les diastéréoisomères cis et trans dans des conditions de contrôle de type Felkin-Ahn et de contrôle par chélation respectivement. Les composés bicycliques finaux cibles ont été obtenus par une réaction d’aldol intramoléculaire catalyzéé par la proline, par métathèse de fermeture de cycle et par l’application de la méthode de Vorbrüggen pour la synthèse de nucléosides.
Resumo:
Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.
Resumo:
[GRAPHICS] The synthesis of unsaturated beta-linked C-disaccharides by the Lewis acid-mediated reaction of 3-O-acetylated glycals with monosaccharide-derived alkenes is described. Deprotection and selective hydrogenation of an exocyclic carbon-carbon double, in the presence of an endocyclic double bond, for representative targets is also illustrated.
Resumo:
To obtain structure-function information of a range of carbohydrates, which are available only in very small quantities, an in vitro fermentation method using 7 mg of carbohydrate, 0.7 mL of basal medium, and 1% (w/v) of fecal bacteria was validated against a pH-controlled batch culture with 150 mL of basal medium and 1.5g of test carbohydrate. This method was used to determine the influence of different glycosidic linkages and monosaccharide compositions of disaccharides on the selectivity of microbial fermentation. A prebiotic index (PI) was calculated for each disaccharide. Generally, disaccharides with linkages of 1-2, 1-4, and 1-6 generated a high PI score, with kojibiose and sophorose showing the greatest values (21.62 and 18.63, respectively). Apart from 6 alpha-mannobiose, mannose-containing disaccharicles gave a low PI due to low numbers of bifidobacteria and lactobacilli and an increase in bacteroides. The structure-function information obtained in this study may lead to a predictive understanding of how specific structures are fermented by the human gut microflora.
Resumo:
Nanofiltration (NF) of model sugar solutions and commercial oligosaccharide mixtures were studied in both dead-end and cross-flow modes. Preliminary trials, with a dead-end filtration cell, demonstrated the feasibility of fractionating monosaccharides from disaccharides and oligosaccharides in mixtures, using loose nanofiltration (NF-CA-50, NF-TFC-50) membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w w-1) for the monosaccharides and 88% (w w-1) for di, and oligosaccharides were obtained for the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible, with only minor losses of the oligosaccharide content of the mixture. The effects of pressure, feed concentration, and filtration temperature were studied in similar experiments carried out in a cross-flow system, in full recycle mode of operation. The rejection rates of the sugar components increased with increasing pressure, and decreased with both increasing total sugar concentration in the feed and increasing temperature. Continuous diafiltration (CD) purification of model sugar solutions and commercial oligosaccharide mixtures using NF-CA-50 (at 25oC) and DS-5-DL (at 60oC) membranes, gave yield values of 14 to 18% for the monosaccharide, 59 to 89% for the disaccharide and 81 to 98% for the trisaccharide present in the feed. The study clearly demonstrates the potential of cross flow nanofiltration in the purification of oligosaccharide mixtures from the contaminant monosaccharides.
Resumo:
Two loose nanofiltration membranes (NF-CA-50 and NF-TFC-50) and one dense ultrafiltration membrane (UF-CA-1) were used to fractionate commercial oligosaccharide mixtures by applying diafiltration in a 'dead-end' filtration cell at 40bar constant pressure with a maximum volume concentration ratio (VCR) of 6 at each fractionation. The rejections of a monosaccharide (glucose) and a disaccharide (lactose) were determined for each membrane; the results indicated that fractionation between these two sugars was possible using the two nanofiltration membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w/w) for monosaccharides and 88% (w/w) for di- and oligosaccharides were obtained with the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible with only minor losses of the oligosaccharide content of the mixture. The ultrafiltration membrane, at the same time, gave purification levels similar to the NF-TFC-50 membrane with fewer diafiltration steps but with higher losses of di- and oligosaccharides (12% (w/w) for monosaccharides and 53% (w/w) for di- and oligosaccharides on the third run). (C) 2003 Society of Chemical Industry.
Resumo:
Neoglycolipid technology is the basis of a microarray platform for assigning oligosaccharide ligands for carbohydrate-binding proteins. The strategy for generating the neoglycolipid probes by reductive amination results in ring opening of the core monosaccharides. This often limits applicability to short-chain saccharides, although the majority of recognition motifs are satisfactorily presented with neoglycolipids of longer oligosaccharides. Here, we describe neoglycolipids prepared by oxime ligation. We provide evidence from NMR studies that a significant proportion of the oxime-linked core monosaccharide is in the ring-closed form, and this form selectively interacts with a carbohydrate-binding protein. By microarray analyses we demonstrate the effective presentation with oxime-linked neoglycolipids of (1) Lewis(x) trisaccharide to antibodies to Lewisx, (2) sialyllactose analogs to the sialic acid-binding receptors, siglecs, and (3) N-glycans to a plant lectin that requires an intact N-acetylglucosamine core.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The addition of soybean oil and Tween 80 was evaluated with the objective of increasing the production of botryosphaeran, an exopolysaccharide (EPS) of the (1 -> 3 ;1 -> 6)-beta-D-glucan type produced by the fungus Botowsphaeria rhodina MAMB-05. Factorial design and analysis by response surface methodology was developed to select the main factors that would affect and enhance EPS production. The optimized culture conditions were: 40g l(-1) glucose with 10ml l(-1) soybean oil, and 4.5 ml l(-1) Tween 80, during 72h cultivation at 28 degrees C (180 rpm) and initial pH 5.7. The predicted result for botryosphaeran production was 8.22 +/- 1.36 g l(-1), and compared with the experimental value of 7.74 +/- 0.13 g l(-1) . Partial characterization of the botryosphaeran produced under the optimized conditions showed one type of polysaccharide with P-glycosidic linkages containing glucose as monosaccharide. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influence of glucose concentration and other carbohydrates (monosaccharides: fructose, galactose, mannose; polyols: mannitol and sorbitol; disaccharides: lactose, sucrose and commercial sucrose; and industrial sugarcane molasses) were compared as sole carbon sources for the production of Botryosphaeran, an exopolysaccharide (EPS) produced by Botryosphaeria sp. The optimum glucose concentration for EPS production was 50 g 1(-1). With the exception of mannitol, the fungus produced EPS on all carbon sources studied, with highest yields occurring with sucrose followed by glucose. All EPS showed exclusively glucose after acid hydrolysis and monosaccharide analysis. FTIR spectroscopy demonstrated the presence of beta-anomers indicating that all the EPS produced by Botryosphaeria sp. on the different carbon sources were essentially of the beta-D-glucan type.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)