866 resultados para monitoring systems
Resumo:
Estimating the use of illicit drugs in the general community is an important task with ramifications for law enforcement agencies, as well as health portfolios. Australia has four ongoing drug monitoring systems, including the AIC’s DUMA program, the National Drug Strategy Household Survey, the Illicit Drug Reporting System and the Ecstasy and Related Drug Reporting System. The systems vary in methods, but broadly they are reliant upon self-report data and may be subject to selection biases. The present study employed a completely different method. By chemically analysing sewerage water, the study produced daily estimates of consumption of methamphetamine, MDMA and cocaine. Samples were collected in November 2009 and November 2010 from a municipality in Queensland, with an population of over 150,000 people. Estimates were made of the average daily dose and average daily street value per 1,000 people. On the basis of estimated dose and price, the methamphetamine market appeared considerably stronger than either MDMA or cocaine. This paper explains the strengths and weaknesses of wastewater analysis. It considers the potential value of wastewater analysis in measuring net consumption of illicit drugs and the effectiveness of law enforcement agency strategies.
Resumo:
In collaboration with the New South Wales Department of Primary Industries we compared the effectiveness of the spanner crab monitoring systems used by New South Wales and Queensland and developed a fishery-independent survey protocol acceptable to both states. The objectives of this project were to: 1. Determine the age at which spanner crabs (Ranina ranina) recruit to the fishery 2. Develop a common methodology for monitoring and assessing the Australian spanner crab stock 3. Investigate sources of variability in apparent population density.
Resumo:
Background: The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.
Resumo:
The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.
Resumo:
Several hypnosis monitoring systems based on the processed electroencephalogram (EEG) have been developed for use during general anesthesia. The assessment of the analgesic component (antinociception) of general anesthesia is an emerging field of research. This study investigated the interaction of hypnosis and antinociception, the association of several physiological variables with the degree of intraoperative nociception, and aspects of EEG Bispectral Index Scale (BIS) monitoring during general anesthesia. In addition, EEG features and heart rate (HR) responses during desflurane and sevoflurane anesthesia were compared. A propofol bolus of 0.7 mg/kg was more effective than an alfentanil bolus of 0.5 mg in preventing the recurrence of movement responses during uterine dilatation and curettage (D C) after a propofol-alfentanil induction, combined with nitrous oxide (N2O). HR and several HR variability-, frontal electromyography (fEMG)-, pulse plethysmography (PPG)-, and EEG-derived variables were associated with surgery-induced movement responses. Movers were discriminated from non-movers mostly by the post-stimulus values per se or normalized with respect to the pre-stimulus values. In logistic regression analysis, the best classification performance was achieved with the combination of normalized fEMG power and HR during D C (overall accuracy 81%, sensitivity 53%, specificity 95%), and with the combination of normalized fEMG-related response entropy, electrocardiography (ECG) R-to-R interval (RRI), and PPG dicrotic notch amplitude during sevoflurane anesthesia (overall accuracy 96%, sensitivity 90%, specificity 100%). ECG electrode impedances after alcohol swab skin pretreatment alone were higher than impedances of designated EEG electrodes. The BIS values registered with ECG electrodes were higher than those registered simultaneously with EEG electrodes. No significant difference in the time to home-readiness after isoflurane-N2O or sevoflurane-N2O anesthesia was found, when the administration of the volatile agent was guided by BIS monitoring. All other early and intermediate recovery parameters were also similar. Transient epileptiform EEG activity was detected in eight of 15 sevoflurane patients during a rapid increase in the inspired volatile concentration, and in none of the 16 desflurane patients. The observed transient EEG changes did not adversely affect the recovery of the patients. Following the rapid increase in the inhaled desflurane concentration, HR increased transiently, reaching its maximum in two minutes. In the sevoflurane group, the increase was slower and more subtle. In conclusion, desflurane may be a safer volatile agent than sevoflurane in patients with a lowered seizure threshold. The tachycardia induced by a rapid increase in the inspired desflurane concentration may present a risk for patients with heart disease. Designated EEG electrodes may be superior to ECG electrodes in EEG BIS monitoring. When the administration of isoflurane or sevoflurane is adjusted to maintain BIS values at 50-60 in healthy ambulatory surgery patients, the speed and quality of recovery are similar after both isoflurane-N2O and sevoflurane-N2O anesthesia. When anesthesia is maintained by the inhalation of N2O and bolus doses of propofol and alfentanil in healthy unparalyzed patients, movement responses may be best avoided by ensuring a relatively deep hypnotic level with propofol. HR/RRI, fEMG, and PPG dicrotic notch amplitude are potential indicators of nociception during anesthesia, but their performance needs to be validated in future studies. Combining information from different sources may improve the discrimination of the level of nociception.
Resumo:
Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications.
Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake.
To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.
Resumo:
[EU]Lan honetan, software diseinu bat sortu nahi da, zeinaren bidez datu-trafikoen monitorizazio sistemak aztertzeko garatu den eredu matematiko bat ebaluatuko den. Eredu horrentzat interfaze bat egin beharko da, eta interfaze horrek esandako eredua ebaluatzeko softwareaz gain, software gehiago biltzeko ahalmena eduki beharko du. Horrela, ikertzaileek Trafikoa Monitorizatzeko Sistemak aztertzeko sortzen diren eredu matematikoak sistema bakarra erabiliz ebaluatu ahalko dute ahalik eta modu errazenean.
Resumo:
Commercial trawling on the Atlantic slope areas off Brazil intensified in the late 1990’s owing to the expansion of coastal trawling areas and the operations of a chartered foreign fleet. Between 2000 and 2003, 59 fishing trips conducted by 10 chartered trawlers were intensely monitored by observers and satellite vessel monitoring systems, totaling 9,069 tows and 30,085.2 trawling hours. Fishing operations occurred in northern, northeastern, southeastern, and southern sectors of the Brazilian coast in 60–1,173 m depths. Total retained and processed catch were 8,074.6 t and 6,479.8 t, respectively. Argentine hake, Merluccius hubbsi; and Argentine shortfin squid, Illex argentinus, were the primary species taken contributing to 41.1% and 28.6% of the overall catch, respectively. The silver John dory, Zenopsis conchifera; monkfish, Lophius gastrophysus; Brazilian codling, Urophycis mystacea; and the black grouper, Epinephelus nigritus, composed 23% of total processed catch, and the remaining 7.2% was composed of deep-sea shrimps (family Aristeidae) and other teleosts and elasmobranches. The occupation of slope areas included an early exploratory phase, followed by directed phases of the upper slope (300–500 m), aiming principally at the Argentine hake, and the lower slope (>700 m), targeting valuable concentrations of deep-sea aristeid shrimps. The role of chartering for slope trawling development was critically addressed. We conclude that chartered vessels were efficient explorers and were particularly important in areas not available to the technologically limited national fleet. Because the charters were market-oriented and had elevated profit demands, however, those vessels quickly turned from exploration to exploitation and competed with national trawlers in shallower areas and produced significant impacts on Brazil’s modest deep-sea resources.
Resumo:
Aplicações ubíquas e pervasivas são cientes do contexto dos recursos utilizados no que diz respeito à disponibilidade e qualidade. Esta classe de aplicações pode se beneficiar de mecanismos para descobrir recursos que atendam aos requisitos não-funcionais desejados, e mecanismos para monitorar a qualidade destes recursos. Neste trabalho é proposta uma arquitetura para dois serviços que deveriam ser incluídos na infra-estrutura de suporte a ser utilizada pelas aplicações mencionadas: um Serviço de Contexto, que provê acesso a informações de contexto, e um Serviço de Descoberta, que permite a descoberta dinâmica de recursos, levando em conta restrições de contexto a serem satisfeitas. Estes serviços se apóiam em Agentes de Recursos, que efetivamente monitoram os recursos e sensores. Uma implementação de referência foi desenvolvida, oferecendo os serviços mencionados na forma de Serviços Web e implementando os Agentes de Recursos empregando um padrão de projeto simples. Para avaliar os serviços estes foram utilizados como infra-estrutura para o desenvolvimento de um sistema tolerante a falhas e uma aplicação de assistência domiciliar remota (tele-saúde). O desempenho dos serviços também foi avaliado.
Resumo:
Harmful algal blooms (HABs) are a significant and potentially expanding problem around the world. Resource management and public health protection require sufficient information to reduce the impacts of HABs by response strategies and through warnings and advisories. To be effective, these programs can best be served by an integration of improved detection methods with both evolving monitoring systems and new communications capabilities. Data sets are typically collected from a variety of sources, these can be considered as several types: point data, such as water samples; transects, such as from shipboard continuous sampling; and synoptic, such as from satellite imagery. Generation of a field of the HAB distribution requires all of these sampling approaches. This means that the data sets need to be interpreted and analyzed with each other to create the field or distribution of the HAB. The HAB field is also a necessary input into models that forecast blooms. Several systems have developed strategies that demonstrate these approaches. These range from data sets collected at key sites, such as swimming beaches, to automated collection systems, to integration of interpreted satellite data. Improved data collection, particularly in speed and cost, will be one of the advances of the next few years. Methods to improve creation of the HAB field from the variety of data types will be necessary for routine nowcasting and forecasting of HABs.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
提出了一种基于嵌入式实时Linux的设备远程监控系统,重点针对现有远程监控系统体积、实时性问题加以改进。在自行研发的操作系统基础之上,一方面实现了嵌入式Internet技术;另一方面满足了系统硬实时性需求,为故障的实时预报、诊断、控制提供了强有力的支持。
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.