980 resultados para molecular sequence data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cysticercosis is one of the most important zoonosis, not only because of the effects on animal health and its economic consequences, but also due to the serious danger it poses to humans. The two main parasites involved in the taeniasis-cysticercosis complex in Brazil are Taenia saginata and Taenia solium. Differentiating between these two parasites is important both for disease control and for epidemiological studies. The purpose of this work was to identify genetic markers that could be used to differentiate these parasites. Out of 120 oligonucleotide decamers tested in random amplified polymorphic DNA (RAPD) assays, 107 were shown to discriminate between the two species of Taenia. Twenty-one DNA fragments that were specific for each species of Taenia were chosen for DNA cloning and sequencing. Seven RAPD markers were converted into sequence characterized amplified region (SCAR) markers with two specific for T. saginata and five specific for T. solium as shown by agarose gel electrophoresis. These markers were developed as potential tools to differentiate T. solium from T. saginata in epidemiological studies. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P = .001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified. © 2007 by The American Society of Human Genetics. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18. mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate. © 2011 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prior studies of phylogenetic relationships among phocoenids based on morphology and molecular sequence data conflict and yield unresolved relationships among species. This study evaluates a comprehensive set of cranial, postcranial, and soft anatomical characters to infer interrelationships among extant species and several well-known fossil phocoenids, using two different methods to analyze polymorphic data: polymorphic coding and frequency step matrix. Our phylogenetic results confirmed phocoenid monophyly. The division of Phocoenidae into two subfamilies previously proposed was rejected, as well as the alliance of the two extinct genera Salumiphocaena and Piscolithax with Phocoena dioptrica and Phocoenoides dalli. Extinct phocoenids are basal to all extant species. We also examined the origin and distribution of porpoises within the context of this phylogenetic framework. Phocoenid phylogeny together with available geologic evidence suggests that the early history of phocoenids was centered in the North Pacific during the middle Miocene, with subsequent dispersal into the southern hemisphere in the middle Pliocene. A cooling period in the Pleistocene allowed dispersal of the southern ancestor of Phocoena sinusinto the North Pacific (Gulf of California).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, five genera are assigned to red seaweeds of the Laurencia complex worldwide: Chondrophycus, Laurencia s.s., Osmundea, Palisada and Yuzurua. The genera are segregated on the basis of morphological characters, especially the reproductive traits, and molecular sequences of the plastid-encoded gene rbcL. Four of the genera have been resolved as monophyletic, but not Laurencia s.s. In this study based on an rbcL gene phylogeny we show the presence of a sixth lineage within the Laurencia complex, viz., Laurencia marilzae plus two unidentified species of Laurencia from Brazil. The phylogenetic position of this group, combined with the high genetic divergence from Laurencia s.s. (8.2-11%), strongly support the establishment of a sixth genus for the complex, proposed here as Laurenciella gen. nov. This new taxon differs from Laurencia s.s. and from the other genera of the complex by molecular sequence data, but is indistinguishable from Laurencia s.s. by the usual morphological features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR, which eludes these problems by exploiting 'off-target' sequence reads. CopywriteR allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. CopywriteR outperforms existing methods and constitutes a widely applicable alternative to available tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Plasmodium falciparum Genome Database (http://PlasmoDB.org) integrates sequence information, automated analyses and annotation data emerging from the P.falciparum genome sequencing consortium. To date, raw sequence coverage is available for >90% of the genome, and two chromosomes have been finished and annotated. Data in PlasmoDB are organized by chromosome (1–14), and can be accessed using a variety of tools for graphical and text-based browsing or downloaded in various file formats. The GUS (Genomics Unified Schema) implementation of PlasmoDB provides a multi-species genomic relational database, incorporating data from human and mouse, as well as P.falciparum. The relational schema uses a highly structured format to accommodate diverse data sets related to genomic sequence and gene expression. Tools have been designed to facilitate complex biological queries, including many that are specific to Plasmodium parasites and malaria as a disease. Additional projects seek to integrate genomic information with the rich data sets now becoming available for RNA transcription, protein expression, metabolic pathways, genetic and physical mapping, antigenic and population diversity, and phylogenetic relationships with other apicomplexan parasites. The overall goal of PlasmoDB is to facilitate Internet- and CD-ROM-based access to both finished and unfinished sequence information by the global malaria research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The release of vast quantities of DNA sequence data by large-scale genome and expressed sequence tag (EST) projects underlines the necessity for the development of efficient and inexpensive ways to link sequence databases with temporal and spatial expression profiles. Here we demonstrate the power of linking cDNA sequence data (including EST sequences) with transcript profiles revealed by cDNA-AFLP, a highly reproducible differential display method based on restriction enzyme digests and selective amplification under high stringency conditions. We have developed a computer program (GenEST) that predicts the sizes of virtual transcript-derived fragments (TDFs) of in silico-digested cDNA sequences retrieved from databases. The vast majority of the resulting virtual TDFs could be traced back among the thousands of TDFs displayed on cDNA-AFLP gels. Sequencing of the corresponding bands excised from cDNA-AFLP gels revealed no inconsistencies. As a consequence, cDNA sequence databases can be screened very efficiently to identify genes with relevant expression profiles. The other way round, it is possible to switch from cDNA-AFLP gels to sequences in the databases. Using the restriction enzyme recognition sites, the primer extensions and the estimated TDF size as identifiers, the DNA sequence(s) corresponding to a TDF with an interesting expression pattern can be identified. In this paper we show examples in both directions by analyzing the plant parasitic nematode Globodera rostochiensis. Various novel pathogenicity factors were identified by combining ESTs from the infective stage juveniles with expression profiles of ∼4000 genes in five developmental stages produced by cDNA-AFLP.