841 resultados para modelling the robot
Resumo:
The microscale abrasion or ball-cratering test is being increasingly applied to a wide range of bulk materials and coatings. The response of materials to this test depends critically on the nature of the motion of the abrasive particles in the contact zone: whether they roll and produce multiple indentations in the coating, or slide causing grooving abrasion. Similar phenomena also occur when hard contaminant particles enter a lubricated contact. This paper presents simple quantitative two-dimensional models which describe two aspects of the interaction between a hard abrasive particle and two sliding surfaces. The first model treats the conditions under which a spherical abrasive particle of size d can be entrained into the gap between a rotating sphere of radius R and a plane surface. These conditions are determined by the coefficients of friction between the particle and the sphere, and the particle and the plane, denoted by μs and μp respectively. This model predicts that the values of (μs + μp) and 2μs should both exceed √2d/R for the particles to be entrained into the contact. If either is less than this value, the particle will slide against the sphere and never enter the contact. The second model describes the mechanisms of abrasive wear in a contact when an idealized rhombus-sectioned prismatic particle is located between two parallel plane surfaces separated by a certain distance, which can represent either the thickness of a fluid film or the spacing due to the presence of other particles. It is shown that both the ratio of particle size to the separation of the surfaces and the ratio of the hardnesses of the two surfaces have important influences on the particle motion and hence on the mechanism of the resulting abrasive wear. Results from this model are compared with experimental observations, and the model is shown to lead to realistic predictions. © IMechE 2003.
Resumo:
Design work involves uncertainty that arises from, and influences, the progressive development of solutions. This paper analyses the influences of evolving uncertainty levels on the design process. We focus on uncertainties associated with choosing the values of design parameters, and do not consider in detail the issues that arise when parameters must first be identified. Aspects of uncertainty and its evolution are discussed, and a new task-based model is introduced to describe process behaviour in terms of changing uncertainty levels. The model is applied to study two process configuration problems based on aircraft wing design: one using an analytical solution and one using Monte-Carlo simulation. The applications show that modelling uncertainty levels during design can help assess management policies, such as how many concepts should be considered during design and to what level of accuracy. © 2011 Springer-Verlag.
Resumo:
P> Widespread hunting throughout Amazonia threatens the persistence of large primates and other vertebrates. Most studies have used models of limited validity and restricted spatial and temporal scales to assess the sustainability. We use human-demographi
Resumo:
Transient flows in a confined ventilated space induced by a buoyancy source of time-varying strength and an external wind are examined. The space considered has varying cross-sectional area with height. A generalised theoretical model is proposed to investigate the flow dynamics following the activation of an external wind and an internal source of buoyancy. To investigate the effect of geometry, we vary the angle of the wall inclination of a particular geometry in which a point source of constant buoyancy is activated in the absence of wind. Counter-intuitively the ventilation is worse and lower airflow rates are established for geometries of increasing cross-sectional areas with height. We investigate the effect of the source buoyancy strength by comparing two cases: (1) when the buoyancy input is constant and (2) when the buoyancy input gradually increases over time so that after a finite time the total buoyancy inputs for (1) and (2) are identical. The rate at which the source heat gains are introduced has a significant role on the flow behaviour as we find that, in case (2), a warmer layer and a more pronounced overshoot are obtained than in case (1). The effect of assisting and opposing wind on the transient ventilation of an enclosure of constant cross-sectional area with height and constant heat gains is examined. A Froude number Fr is used to define the relative strengths of the buoyancy-induced and wind-induced velocities and five different transient states and their associated critical Fr are identified. © 2010 Elsevier Ltd.