987 resultados para modal transformation matrix
Resumo:
The incidence of non-melanoma skin cancer is increasing worldwide. Basal cell carcinoma followed by squamous cell carcinoma and malignant melanoma are the most frequent skin tumors. Immunosuppressed patients have an increased risk of neoplasia, of which non-melanoma skin cancer is the most common. Matrix metalloproteinases (MMPs) are proteolytic enzymes that collectively are capable of degrading virtually all components of the extracellular matrix. MMPs can also process substrates distinct from extracellular matrix proteins and influence cell proliferation, differentiation, angiogenesis, and apoptosis. MMP activity is regulated by their natural inhibitors, tissue inhibitors of metallopro-teinases (TIMPs). In this study, the expression patterns of MMPs, TIMPs, and certain cancer-related molecules were investigated in premalignant and malignant lesions of the human skin. As methods were used immunohistochemisty, in situ hybridization, and reverse transcriptase polymerase chain reaction (RT-PCR) from the cell cultures. Our aim was to evaluate the expression pattern of MMPs in extramammary Paget's disease in order to find markers for more advanced tumors, as well as to shed light on the origin of this rare neoplasm. Novel MMPs -21, -26, and -28 were studied in melanoma cell culture, in primary cutaneous melanomas, and their sentinel nodes. The MMP expression profile in keratoacanthomas and well-differentiated squamous cell carcinomas was analyzed to find markers to differentiate benign keratinocyte hyperproliferation from malignantly transformed cells. Squamous cell carcinomas of immunosuppressed organ transplant recipients were compared to squamous cell carcinomas of matched immunocompetent controls to investigate the factors explaining their more aggressive nature. We found that MMP-7 and -19 proteins are abundant in extramammary Paget's disease and that their presence may predict an underlying adenocarcinoma in these patients. In melanomas, MMP-21 was upregulated in early phases of melanoma progression, but disappeared from the more aggressive tumors with lymph node metastases. The presence of MMP-13 in primary melanomas and lymph node metastases may relate to more aggressive disease. In keratoacanthomas, the expression of MMP-7 and -9 is rare and therefore should raise a suspicion of well-differentiated squamous cell carcinomas. Furthermore, MMP-19 and p16 were observed in benign keratinocyte hyperproliferation of keratoacanthomas, whereas they were generally lost from malignant keratinocytes of SCCs. MMP-26 staining was significantly stronger in squamous cell carcinomas and Bowen s disease samples of organ transplant recipients and it may contribute to the more aggressive nature of squamous cell carcinomas in immunosuppressed patients. In addition, the staining for MMP-9 was significantly stronger in macrophages surrounding the tumors of the immunocompetent group and in neutrophils of those patients on cyclosporin medication. In conclusion, based on our studies, MMP-7 and -19 might serve as biomarkers for more aggressive extramammary Paget's disease and MMP-21 for malignant transformation of melanocytes. MMP -7, -9, and -26, however, could play an important role in the pathobiology of keratinocyte derived malignancies.
Resumo:
The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.
Resumo:
The solid-state transformation behaviour of the icosahedral phase in rapidly solidified Al-20 at.% Mn has been investigated by in situ heating experiments in the transmission electron microscope. As-rapidly-solidified Al-20 at.% Mn consists mainly of a dendritic icosahedral phase, with a small amount of interdendritic f.c.c. agr-Al. During subsequent heat treatment at temperatures below about 500°C, the dendritic icosahedral phase grows and consumes the interdendritic agr-Al. At about 500°C the decagonal phase nucleates near icosahedral dendrite and grain boundaries and then grows into the icosahedral matrix by lateral motion of ledges 10-20 nm high across facet planes normal to the twofold symmetry axes. At about 600°C the decagonal phase transforms into a crystalline phase. The present study suggests that solid-state decomposition of the icosahedral phase is the mechanism of decagonal phase formation in as-rapidly-solidified Al-Mn alloys.
Resumo:
Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A practical method is proposed to identify the mode associated with the frequency part of the eigenvalue of the Floquet transition matrix (FTM). From the FTM eigenvector, which contains the states and their derivatives, the ratio of the derivative and the state corresponding to the largest component is computed. The method exploits the fact that the imaginary part of this (complex) ratio closely approximates the frequency of the mode. It also lends itself well to automation and has been tested over a large number of FTMs of order as high as 250.
Resumo:
The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.
Resumo:
The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gribov's observation that global gauge fixing is impossible has led to suggestions that there may be a deep connection between gauge fixing and confinement. We find an unexpected relation between the topological nontriviality of the gauge bundle and colored states in SU(N) Yang-Mills theory, and show that such states are necessarily impure. We approximate QCD by a rectangular matrix model that captures the essential topological features of the gauge bundle, and demonstrate the impure nature of colored states explicitly. Our matrix model also allows the inclusion of the QCD theta-term, as well as to perform explicit computations of low-lying glueball masses. This mass spectrum is gapped. Since an impure state cannot evolve to a pure one by a unitary transformation, our result shows that the solution to the confinement problem in pure QCD is fundamentally quantum information-theoretic.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.
Resumo:
For an orthotropic laminate, an equivalent system with doubly cyclic periodicity is introduced. Then a 3-dimensional finite element model for the equivalent system is transformed into the unitary space, where the large finite element matrix equation is decoupled into some small matrix equations. Such a decoupling very efficiently reduces the computational effort. For an orthotropic laminate with four clamped edges, no exact elasticity solution is available, and the deflection values predicted by different methods have a considerable difference each other for a small length-to-thickness ratio. The present predictions are the largest because the present method is a full 3-dimensional finite element analysis without superfluous constraints. Illustrative numerical examples are presented to observe the distributions of stresses through the thickness of the laminates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Osteopontin (OPN) is a predominantly secreted extracellular matrix glycophosphoprotein which binds to alpha v-containing integrins and has an important role in malignant cell attachment and invasion. High OPN expression in the primary tumor is associated with early metastasis and poor outcome in human breast and other cancers. Forced OPN overexpression in benign cells may induce neoplastic-like cell behaviour including increased attachment and invasion in vitro as well as the ability to metastasize in vivo. Conversely, OPN inhibition by antisense cDNA impedes cell growth and tumor forming capacity. OPN is not mutationally activated in cancer but its expression is regulated by Wnt/Tcf signaling, steroid receptors, growth factors, ras, Ets and AP-1 transcription factors. Presumably these factors are implicated in induction of OPN overexpression in cancer. Greater understanding of the role of OPN in neoplastic change and its transcriptional regulation may enable development of novel cancer treatment strategies
Resumo:
Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.