966 resultados para mobile nodes
Resumo:
Opportunistic routing (OR) employs a list of candi- dates to improve reliability of wireless transmission. However, list-based OR features restrict the freedom of opportunism, since only the listed nodes can compete for packet forwarding. Additionally, the list is statically generated based on a single metric prior to data transmission, which is not appropriate for mobile ad-hoc networks. This paper provides a thorough perfor- mance evaluation of a new protocol - Context-aware Opportunistic Routing (COR). The contributions of COR are threefold. First, it uses various types of context information simultaneously such as link quality, geographic progress, and residual energy of nodes to make routing decisions. Second, it allows all qualified nodes to participate in packet forwarding. Third, it exploits the relative mobility of nodes to further improve performance. Simulation results show that COR can provide efficient routing in mobile environments, and it outperforms existing solutions that solely rely on a single metric by nearly 20 - 40 %.
Resumo:
Opportunistic routing (OR) employs a list of candidates to improve wireless transmission reliability. However, conventional list-based OR restricts the freedom of opportunism, since only the listed nodes are allowed to compete for packet forwarding. Additionally, the list is generated statically based on a single network metric prior to data transmission, which is not appropriate for mobile ad-hoc networks (MANETs). In this paper, we propose a novel OR protocol - Context-aware Adaptive Opportunistic Routing (CAOR) for MANETs. CAOR abandons the idea of candidate list and it allows all qualified nodes to participate in packet transmission. CAOR forwards packets by simultaneously exploiting multiple cross-layer context information, such as link quality, geographic progress, energy, and mobility.With the help of the Analytic Hierarchy Process theory, CAOR adjusts the weights of context information based on their instantaneous values to adapt the protocol behavior at run-time. Moreover, CAOR uses an active suppression mechanism to reduce packet duplication. Simulation results show that CAOR can provide efficient routing in highly mobile environments. The adaptivity feature of CAOR is also validated.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
Two of the main issues in wireless industrial Internet of Things applications are interoperability and network lifetime. In this work we extend a semantic interoperability platform and introduce an application-layer sleepy nodes protocol that can leverage on information stored in semantic repositories. We propose an integration platform for managing the sleep states and an application layer protocol based upon the Constraint Application Layer protocol. We evaluate our system on windowing based task allocation strategies, aiming for lower overall energy consumption that results in higher network lifetime.
Resumo:
Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.
Resumo:
Providing QoS in the context of Ad Hoc networks includes a very wide field of application from the perspective of every level of the architecture in the network. Saying It in another way, It is possible to speak about QoS when a network is capable of guaranteeing a trustworthy communication in both extremes, between any couple of the network nodes by means of an efficient Management and administration of the resources that allows a suitable differentiation of services in agreement with the characteristics and demands of every single application.The principal objective of this article is the analysis of the quality parameters of service that protocols of routering reagents such as AODV and DSR give in the Ad Hoc mobile Networks; all of this is supported by the simulator ns-2. Here were going to analyze the behavior of some other parameters like effective channel, loss of packages and latency in the protocols of routering. Were going to show you which protocol presents better characteristics of Quality of Service (QoS) in the MANET networks.
Resumo:
HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.
Resumo:
Providing QoS in the context of Ad Hoc networks includes a very wide field of application from the perspective of every level of the architecture in the network.In order for simulation studies to be useful, it is very important that the simulation results match as closely as possible with the test bed results. In this Paper, we study the throughput performance (parameter QoS) in Mobile Ad Hoc Networks (MANETs) and compares emulated test bed results with simulation results from NS2 (Network Simulator). The performance of the Mobile Ad Hoc Networks is very sensitive to the number of users and the offered load. When the number of users/offered load is high then the collisions increase resulting in larger wastage of the medium and lowering overall throughput. The aim of this research is to compare the throughput of Mobile Ad Hoc Networks using three different scenarios: 97, 100 and 120 users (nodes) using simulator NS2. By analyzing the graphs in MANETs, it is concluded When the number of users o nodes is increased beyond the certain limit, throughput decreases.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^
Resumo:
Localization is one of the key technologies in Wireless Sensor Networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints on cost and power consumption make it infeasible to equip each sensor node in the network with a Global Position System (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use mobile anchor nodes (MANs), which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. A considerable body of research has addressed the Mobile Anchor Node Assisted Localization (MANAL) problem. However to the best of our knowledge, no updated surveys on MAAL reflecting recent advances in the field have been presented in the past few years. This survey presents a review of the most successful MANAL algorithms, focusing on the achievements made in the past decade, and aims to become a starting point for researchers who are initiating their endeavors in MANAL research field. In addition, we seek to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful advances in this research field.
Resumo:
The past few decades have witnessed the widespread adaptation of wireless devices such as cellular phones and Wifi-connected laptops, and demand for wireless communication is expected to continue to increase. Though radio frequency (RF) communication has traditionally dominated in this application space, recent decades have seen an increasing interest in the use of optical wireless (OW) communication to supplement RF communications. In contrast to RF communication technology, OW systems offer the use of largely unregulated electromagnetic spectrum and large bandwidths for communication. They also offer the potential to be highly secure against jamming and eavesdropping. Interest in OW has become especially keen in light of the maturation of light-emitting diode (LED) technology. This maturation, and the consequent emerging ubiquity of LED technology in lighting systems, has motivated the exploration of LEDs for wireless communication purposes in a wide variety of applications. Recent interest in this field has largely focused on the potential for indoor local area networks (LANs) to be realized with increasingly common LED-based lighting systems. We envision the use of LED-based OW to serve as a supplement to RF technology in communication between mobile platforms, which may include automobiles, robots, or unmanned aerial vehicles (UAVs). OW technology may be especially useful in what are known as RF-denied environments, in which RF communication may be prohibited or undesirable. The use of OW in these settings presents major challenges. In contrast to many RF systems, OWsystems that operate at ranges beyond a few meters typically require relatively precise alignment. For example, some laser-based optical wireless communication systems require alignment precision to within small fractions of a degree. This level of alignment precision can be difficult to maintain between mobile platforms. Additionally, the use of OW systems in outdoor settings presents the challenge of interference from ambient light, which can be much brighter than any LED transmitter. This thesis addresses these challenges to the use of LED-based communication between mobile platforms. We propose and analyze a dual-link LED-based system that uses one link with a wide transmission beam and relaxed alignment constraints to support a more narrow, precisely aligned, higher-data-rate link. The use of an optical link with relaxed alignment constraints to support the alignment of a more precisely aligned link motivates our exploration of a panoramic imaging receiver for estimating the range and bearing of neighboring nodes. The precision of such a system is analyzed and an experimental system is realized. Finally, we present an experimental prototype of a self-aligning LED-based link.