997 resultados para minor planets, asteroids: general


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it is clear that regional analgesia in association with general anaesthesia substantially reduces postoperative pain, the benefits in terms of overall perioperative outcome are less evident. The aim of this nonsystematic review was to evaluate the effect on middle and long-term postoperative outcomes of adding regional perioperative analgesia to general anaesthesia. This study is based mostly on systematic reviews, large epidemiological studies and large or high-quality randomized controlled trials that were selected and evaluated by the author. The endpoints that are discussed are perioperative morbidity, cancer recurrence, chronic postoperative pain, postoperative rehabilitation and risk of neurologic damage. Epidural analgesia may have a favourable but very small effect on perioperative morbidity. The influence of other regional anaesthetic techniques on perioperative morbidity is unclear. Preliminary data suggest that regional analgesia might reduce the incidence of cancer recurrence. However, adequately powered randomized controlled trials are lacking. The sparse literature available suggests that regional analgesia may prevent the development of chronic postoperative pain. Rehabilitation in the immediate postoperative period is possibly improved, but the advantages in the long term remain unclear. Permanent neurological damage is extremely rare. In conclusion, while the risk of permanent neurologic damage remains extremely low, evidence suggests that regional analgesia may improve relevant outcomes in the long term. The effect size is mostly small or the number-needed-to-treat is high. However, considering the importance of the outcomes of interest, even minor improvement probably has substantial clinical relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Li-Fraumeni Syndrome (LFS) is a hereditary cancer syndrome which predisposes individuals to cancer beginning in childhood. These risks are spread across a lifetime, from early childhood to adulthood. Mutations in the p53 tumor suppressor gene are known to cause the majority of cases of LFS. The risk for early onset cancer in individuals with Li-Fraumeni Syndrome is high. Studies have shown that individuals with LFS have a 90% lifetime cancer risk. Children under 18 have up to a 15% chance of cancer development. Effectiveness of cancer screening and management in individuals with Li-Fraumeni Syndrome is unclear. Screening for LFS-associated cancers has not been shown to reduce mortality. Due to the lack of effective screening techniques for childhood cancers, institutions vary with regard to their policies on testing children for LFS. There are currently no national guidelines regarding predictive testing of children who are at risk of inheriting LFS. No studies have looked at parental attitudes towards predictive p53 genetic testing in their children. This was a cross-sectional pilot study aimed at describing these attitudes. We identified individuals whose children were at risk for inheriting p53 genetic mutations. These individuals were provided with surveys which included validated measures addressing attitudes and beliefs towards genetic testing. The questionnaire included qualitative and quantitative measures. Six individuals completed and returned the questionnaire with a response rate of 28.57%. In general, respondents agreed that parents should have the opportunity to obtain p53 genetic testing for their child. Parents vary in regard to their attitudes towards who should be involved in the decision making process and at what time and under what considerations testing should occur. Testing motivations cited most important by respondents included family history, planning for the future and health management. Concern for insurance genetic discrimination was cited as the most important “con” to genetic testing. Although limited by a poor response rate, this study can give health care practitioners insight into testing attitudes and beliefs of families considering pediatric genetic testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen- and carbon-isotope ratios in the carbonate of benthic ostracodes (Pseudocandona marchica) and molluscs (Pisidium ssp.) were measured across the transitions bordering the Younger Dryas chronozone in littoral lacustrine cores from Gerzensee (Switzerland). The specific biogenic carbonate records confirm the major shifts already visible in the continuous bulk-carbonate oxygen-isotope record (δ18OCc). If corrected for their vital offsets, oxygen-isotope ratios of Pisidium and juvenile P. marchica, both formed in summer, are almost identical to δ18OCc. This bulk carbonate is mainly composed of encrustations of benthic macrophythes (Chara ssp.), also mainly produced during summer. Adult P. marchica, which calcify in winter, show consistently higher δ18O, larger shifts across both transitions, and short positive excursions compared with the summer forms, especially during early Preboreal. Despite such complexity, the δ18O of adult P. marchica probably reflects more accurately the variations of the δ18O of former lake water because, during winter, calcification temperatures are less variable and the water column isotopically uniform. The difference between normalised δ18O of calcite precipitated in winter to that formed in summer can be used to estimate the minimum difference between summer and winter water temperatures. In general, the results indicate warmer summers during the late Allerød and early Preboreal compared with the Younger Dryas. Altogether, the isotopic composition of lake water (δ18OL) and of the dissolved inorganic carbonate (δ13CDIC) reconstructed from adult Pseudocandona marchica, as well as the seasonal water temperature contrasts, indicate that the major shifts in the δ18O of local precipitation at Gerzensee were augmented by changes of the lake's water balance, with relatively higher evaporative loss occurring during the Allerød compared with the Younger Dryas. It is possible that during the early Preboreal the lake might even have been hydrologically closed for a short period. We speculate that such hydrologic changes reflect a combination of varying evapotranspiration and a rearrangement of groundwater recharge during those climatic shifts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulmus minor es una especie arbórea originaria de Europa cuyas poblaciones han sido diezmadas por el hongo patógeno causante de la enfermedad de la grafiosis. La conservación de los olmos exige plantearse su propagación a través de plantaciones y conocer mejor su ecología y biología. Ulmus minor es un árbol de ribera, pero frecuentemente se encuentra alejado del cauce de arroyos y ríos, donde la capa freática sufre fuertes oscilaciones. Por ello, nuestra hipótesis general es que esta especie es moderadamente resistente tanto a la inundación como a la sequía. El principal objetivo de esta tesis doctoral es entender desde un punto de vista funcional la respuesta de U. minor a la inundación, la sequía y la infección por O. novo-ulmi; los factores que posiblemente más influyen en la distribución actual de U. minor. Con este objetivo se persigue dar continuidad a los esfuerzos de conservación de esta especie que desde hace años se dedican en varios centros de investigación a nivel mundial, ya que, entender mejor los mecanismos que contribuyen a la resistencia de U. minor ante la inoculación con O. novo-ulmi y factores de estrés abiótico ayudará en la selección y propagación de genotipos resistentes a la grafiosis. Se han planteado tres experimentos en este sentido. Primero, se ha comparado la tolerancia de brinzales de U. minor y U. laevis – otro olmo ibérico – a una inmersión controlada con el fin de evaluar su tolerancia a la inundación y comprender los mecanismos de aclimatación. Segundo, se ha comparado la tolerancia de brinzales de U. minor y Quercus ilex – una especie típica de ambientes Mediterránea secos – a la falta de agua en el suelo con el fin de evaluar el grado de tolerancia y los mecanismos de aclimatación a la sequía. El hecho de comparar dos especies contrastadas responde al interés en entender mejor cuales son los procesos que conducen a la muerte de una planta en condiciones de sequía – asunto sobre el que hay una interesante discusión desde hace algunos años. En tercer lugar, con el fin de entender mejor la resistencia de algunos genotipos de U. minor a la grafiosis, se han estudiado las diferencias fisiológicas y químicas constitutivas e inducidas por O. novo-ulmi entre clones de U. minor seleccionados a priori por su variable grado de resistencia a esta enfermedad. En el primer experimento se observó que los brinzales de U. minor sobrevivieron 60 días inmersos en una piscina con agua no estancada hasta una altura de 2-3 cm por encima del cuello de la raíz. A los 60 días, los brinzales de U. laevis se sacaron de la piscina y, a lo largo de las siguientes semanas, fueron capaces de recuperar las funciones fisiológicas que habían sido alteradas anteriormente. La conductividad hidráulica de las raíces y la tasa de asimilación de CO2 neta disminuyeron en ambas especies. Por el contrario, la tasa de respiración de hojas, tallos y raíces aumentó en las primeras semanas de la inundación, posiblemente en relación al aumento de energía necesario para desarrollar mecanismos de aclimatación a la inundación, como la hipertrofia de las lenticelas que se observó en ambas especies. Por ello, el desequilibrio del balance de carbono de la planta podría ser un factor relevante en la mortalidad de las plantas ante inundaciones prolongadas. Las plantas de U. minor (cultivadas en envases de 16 litros a media sombra) sobrevivieron por un prolongado periodo de tiempo en verano sin riego; la mitad de las plantas murieron tras 90 días sin riego. El cierre de los estomas y la pérdida de hojas contribuyeron a ralentizar las pérdidas de agua y tolerar la sequía en U. minor. Las obvias diferencias en tolerancia a la sequía con respecto a Q. ilex se reflejaron en la distinta capacidad para ralentizar la aparición del estrés hídrico tras dejar de regar y para transportar agua en condiciones de elevada tensión en el xilema. Más relevante es que las plantas con evidentes síntomas de decaimiento previo a su muerte exhibieron pérdidas de conductividad hidráulica en las raíces del 80% en ambas especies, mientras que las reservas de carbohidratos apenas variaron y lo hicieron de forma desigual en ambas especies. Árboles de U. minor de 5 y 6 años de edad (plantados en eras con riego mantenido) exhibieron una respuesta a la inoculación con O. novo-ulmi consistente con ensayos previos de resistencia. La conductividad hidráulica del tallo, el potencial hídrico foliar y la tasa de asimilación de CO2 neta disminuyeron significativamente en relación a árboles inoculados con agua, pero solo en los clones susceptibles. Este hecho enlaza con el perfil químico “más defensivo” de los clones resistentes, es decir, con los mayores niveles de suberina, ácidos grasos y compuestos fenólicos en estos clones que en los susceptibles. Ello podría restringir la propagación del hongo en el árbol y preservar el comportamiento fisiológico de los clones resistentes al inocularlos con el patógeno. Los datos indican una respuesta fisiológica común de U. minor a la inundación, la sequía y la infección por O. novo-ulmi: pérdida de conductividad hidráulica, estrés hídrico y pérdida de ganancia neta de carbono. Pese a ello, U. minor desarrolla varios mecanismos que le confieren una capacidad moderada para vivir en suelos temporalmente anegados o secos. Por otro lado, el perfil químico es un factor relevante en la resistencia de ciertos genotipos a la grafiosis. Futuros estudios deberían examinar como este perfil químico y la resistencia a la grafiosis se ven alteradas por el estrés abiótico. ABSTRACT Ulmus minor is a native European elm species whose populations have been decimated by the Dutch elm disease (DED). An active conservation of this species requires large-scale plantations and a better understanding of its biology and ecology. U. minor generally grows close to water channels. However, of the Iberian riparian tree species, U. minor is the one that spread farther away from rivers and streams. For these reasons, we hypothesize that this species is moderately tolerant to both flooding and drought stresses. The main aim of the present PhD thesis is to better understand the functional response of U. minor to the abiotic stresses – flooding and drought – and the biotic stress – DED – that can be most influential on its distribution. The overarching goal is to aid in the conservation of this emblematic species through a better understanding of the mechanisms that contribute to resistance to abiotic and biotic stresses; an information that can help in the selection of resistant genotypes and their expansion in large-scale plantations. To this end, three experiments were set up. First, we compared the tolerance to experimental immersion between seedlings of U. minor and U. laevis – another European riparian elm species – in order to assess their degree of tolerance and understand the mechanisms of acclimation to this stress. Second, we investigated the tolerance to drought of U. minor seedlings in comparison with Quercus ilex (an oak species typical of dry Mediterranean habitats). Besides assessing and understanding U. minor tolerance to drought at the seedling stage, the aim was to shed light into the functional alterations that trigger drought-induced plant mortality – a matter of controversy in the last years. Third, we studied constitutive and induced physiological and biochemical differences among clones of variable DED resistance, before and following inoculation with Ophiostoma novo-ulmi. The goal is to shed light into the factors of DED resistance that is evident in some genotypes of U. minor, but not others. Potted seedlings of U. minor survived for 60 days immersed in a pool with running water to approximately 2-3 cm above the stem collar. By this time, U. minor seedlings died, whereas U. laevis seedlings moved out of the pool were able to recover most physiological functions that had been altered by flooding. For example, root hydraulic conductivity and leaf photosynthetic CO2 uptake decreased in both species; while respiration initially increased with flooding in leaves, stems and roots possibly to respond to energy demands associated to mechanisms of acclimation to soil oxygen deficiency; as example, a remarkable hypertrophy of lenticels was soon observed in flooded seedlings of both species. Therefore, the inability to maintain a positive carbon balance somehow compromises seedling survival under flooding, earlier in U. minor than U. laevis, partly explaining their differential habitats. Potted seedlings of U. minor survived for a remarkable long time without irrigation – half of plants dying only after 90 days of no irrigation in conditions of high vapour pressure deficit typical of summer. Some mechanisms that contributed to tolerate drought were leaf shedding and stomata closure, which reduced water loss and the risk of xylem cavitation. Obviously, U. minor was less tolerant to drought than Q. ilex, differences in drought tolerance resulting mostly from the distinct capacity to postpone water stress and conduct water under high xylem tension among species. More relevant was that plants of both species exhibited similar symptoms of root hydraulic failure (i.e. approximately 80% loss of hydraulic conductivity), but a slight and variable depletion of non-structural carbohydrate reserves preceding dieback. Five- and six-year-old trees of U. minor (planted in the field with supplementary watering) belonging to clones of contrasted susceptibility to DED exhibited a different physiological response to inoculation with O. novo-ulmi. Stem hydraulic conductivity, leaf water potential and photosynthetic CO2 uptake decreased significantly relative to control trees inoculated with water only in DED susceptible clones. This is consistent with the “more defensive” chemical profile observed in resistant clones, i.e. with higher levels of saturated hydrocarbons (suberin and fatty acids) and phenolic compounds than in susceptible clones. These compounds could restrict the spread of O. novo-ulmi and contribute to preserving the near-normal physiological function of resistant trees when exposed to the pathogen. These results evidence common physiological responses of U. minor to flooding, drought and pathogen infection leading to xylem water disruption, leaf water stress and reduced net carbon gain. Still, seedlings of U. minor develop various mechanisms of acclimation to abiotic stresses that can play a role in surviving moderate periods of flood and drought. The chemical profile appears to be an important factor for the resistance of some genotypes of U. minor to DED. How abiotic stresses such as flooding and drought affect the capacity of resistant U. minor clones to face O. novo-ulmi is a key question that must be contemplated in future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continued by the author's Biblical geography of Asia Minor, Phœnicia and Arabia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volume numbers assigned artibrarily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv´en ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ( 10−7) that they constitute plasmas. We outline the criteria required for Alfv´en ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfv´en ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10−6–1 can be obtained as a result of Alfv´en ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfv´en ionization may also be applicable to other astrophysical environments such as protoplanetary disks.