929 resultados para microsatellite marker
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Premise of the study: Microsatellite markers were developed and characterized to investigate genetic diversity and gene flow and to help in conservation efforts for the endangered timber species Plathymenia reticulata. Methods and Results: Eleven microsatellite loci were characterized using 60 adult trees of two populations of P. reticulata from the Atlantic Forest of southern Bahia, Brazil. Of these, nine loci were polymorphic, with an average of 4.39 alleles per locus. The average expected heterozygosity per population ranged from 0.47 to 0.55. The combined exclusion probability was 0.99996. Conclusions: Our results reveal that the microsatellite markers developed in this study are an effective tool for paternity and genetic structure analysis that may be useful for conservation strategies.
Resumo:
Previous microsatellite analyses of sympatric populations of Plasmodium vivax and Plasmodium falciparum in Brazil revealed higher diversity in the former species. However, it remains unclear whether regional species-specific differences in prevalence and transmission levels might account for these findings. Here, we examine sympatric populations of P. vivax (n = 87) and P. falciparum (n = 164) parasites from Pursat province, Western Cambodia, where both species are similarly prevalent. Using 10 genome-wide microsatellites for P. falciparum and 13 for P. vivax, we found that the P. vivax population was more diverse than the sympatric P. falciparum population (average virtual heterozygosity [HE], 0.87 vs. 0.66, P = 0.003), with more multiple-clone infections (89.6% vs. 47.6%) and larger mean number of alleles per marker (16.2 vs. 11.1, P = 0.07). Both populations showed significant multi-locus linkage disequilibrium suggestive of a predominantly clonal mode of parasite reproduction. The higher microsatellite diversity found in P. vivax isolates, compared to sympatric P. falciparum isolates, does not necessarily result from local differences in transmission level and may reflect differences in population history between species or increased mutation rates in P. vivax.
Resumo:
In this study the population structure and connectivity of the Mediterranean and Atlantic Raja clavata (L., 1758) were investigated by analyzing the genetic variation of six population samples (N = 144) at seven nuclear microsatellite loci. The genetic dataset was generated by selecting population samples available in the tissue databases of the GenoDREAM laboratory (University of Bologna) and of the Department of Life Sciences and Environment (University of Cagliari), all collected during past scientific surveys (MEDITS, GRUND) from different geographical locations in the Mediterranean basin and North-east Atlantic sea, as North Sea, Sardinian coasts, Tuscany coasts and Cyprus Island. This thesis deals with to estimate the genetic diversity and differentiation among 6 geographical samples, in particular, to assess the presence of any barrier (geographic, hydrogeological or biological) to gene flow evaluating both the genetic diversity (nucleotide diversity, observed and expected heterozygosity, Hardy- Weinberg equilibrium analysis) and population differentiation (Fst estimates, population structure analysis). In addition to molecular analysis, quantitative representation and statistical analysis of morphological individuals shape are performed using geometric morphometrics methods and statistical tests. Geometric coordinates call landmarks are fixed in 158 individuals belonging to two population samples of Raja clavata and in population samples of closely related species, Raja straeleni (cryptic sibling) and Raja asterias, to assess significant morphological differences at multiple taxonomic levels. The results obtained from the analysis of the microsatellite dataset suggested a geographic and genetic separation between populations from Central-Western and Eastern Mediterranean basins. Furthermore, the analysis also showed that there was no separation between geographic samples from North Atlantic Ocean and central-Western Mediterranean, grouping them to a panmictic population. The Landmark-based geometric morphometry method results showed significant differences of body shape able to discriminate taxa at tested levels (from species to populations).
Resumo:
CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ? 4/5 methylated genes), MSI (MSI-H: ? 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p < 0.0001) to more proximal tumour location, BRAF mutation, MSI-H, MGMT methylation (p = 0.022), advanced pT classification (p = 0.03), mucinous histology (p = 0.069), and less frequent KRAS mutation (p = 0.067) compared to CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p < 0.0001) and increased numbers of CD8+ intra-epithelial lymphocytes (p < 0.0001) were related to CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H.
Resumo:
In order to explore the genetic diversity within Echinococcus multilocularis (E. multilocularis), the cestode responsible for the alveolar echinococcosis (AE) in humans, a microsatellite, composed of (CA) and (GA) repeats and designated EmsB, was isolated and characterized in view of its nature and potential field application. PCR-amplification with specific primers exhibited a high degree of size polymorphism between E. multilocularis and Echinococcus granulosus sheep (G1) and camel (G6) strains. Fluorescent-PCR was subsequently performed on a panel of E. multilocularis isolates to assess intra-species polymorphism level. EmsB provided a multi-peak profile, characterized by tandemly repeated microsatellite sequences in the E. multilocularis genome. This "repetition of repeats" feature provided to EmsB a high discriminatory power in that eight clusters, supported by bootstrap p-values larger than 95%, could be defined among the tested E. multilocularis samples. We were able to differentiate not only the Alaskan from the European samples, but also to detect different European isolate clusters. In total, 25 genotypes were defined within 37 E. multilocularis samples. Despite its complexity, this tandem repeated multi-loci microsatellite possesses the three important features for a molecular marker, i.e. sensitivity, repetitiveness and discriminatory power. It will permit assessing the genetic polymorphism of E. multilocularis and to investigate its spatial distribution in detail.
Resumo:
The ecologically important stream invertebrate Gammarus fossarum is a morphospecies that includes at least three genetically differentiated biological species. We developed ten microsatellite markers and tested them in a total of 208 individuals from all three known cryptic species (types A, B and C). All markers were polymorphic and successfully amplified in type A, nine in type B and five in type C. There were up to 11 alleles per marker and species.
Resumo:
This study uses PCR-derived marker systems to investigate the extent and distribution of genetic variability of 53 Garnacha accessions coming from Italy, France and Spain. The samples studied include 28 Italian accessions (named Tocai rosso in Vicenza area; Alicante in Sicily and Elba island; Gamay perugino in Perugia province; Cannonau in Sardinia), 19 Spanish accessions of different types (named Garnacha tinta, Garnacha blanca, Garnacha peluda, Garnacha roja, Garnacha erguida, Garnacha roya) and 6 French accessions (named Grenache and Grenache noir). In order to verify the varietal identity of the samples, analyses based on 14 simple sequence repeat (SSR) loci were performed. The presence of an additional allele at ISV3 locus (151 bp) was found in four Tocai rosso accessions and in a Sardinian Cannonau clone, that are, incidentally, chimeras. In addition to microsatellite analysis, intravarietal variability study was performed using AFLP, SAMPL and M-AFLP molecular markers. AFLPs could discriminate among several Garnacha samples; SAMPLs allowed distinguishing few genotypes on the basis of their geographic origin, whereas M-AFLPs revealed plant-specific markers, differentiating all accessions. Italian samples showed the greatest variability among themselves, especially on the basis of their different provenance, while Spanish samples were the most similar, in spite of their morphological diversity.
Resumo:
The use of microsatellite markers in large-scale genetic studies is limited by its low throughput and high cost and labor requirements. Here, we provide a panel of 45 multiplex PCRs for fast and cost-efficient genome-wide fluorescence-based microsatellite analysis in grapevine. The developed multiplex PCRs panel (with up to 15-plex) enables the scoring of 270 loci covering all the grapevine genome (9 to 20 loci/chromosome) using only 45 PCRs and sequencer runs. The 45 multiplex PCRs were validated using a diverse grapevine collection of 207 accessions, selected to represent most of the cultivated Vitis vinifera genetic diversity. Particular attention was paid to quality control throughout the whole process (assay replication, null allele detection, ease of scoring). Genetic diversity summary statistics and features of electrophoretic profiles for each studied marker are provided, as are the genotypes of 25 common cultivars that could be used as references in other studies.
Resumo:
The molecular pathogenesis of various categories of breast cancer (BC) has been well described, but surprisingly few reports have appeared on analysis of somatic mutations in bilateral BC. We have performed a polymerase chain reaction (PCR)-driven investigation of chromosomal regions showing common loss of heterozygosity (LOH) in 23 cases (46 rumors) from patients diagnosed with bilateral BC, LOH was observed in 15/46 (33%) informative tumors for chromosome 1p, 5/32 (16%) for 5q, 12/44 (27%) for 11q, 15/40 (38%) for 13q and 4/24 (17%) for 17p. These values are within the range of interlaboratory variations reported fur unilateral BC, There was no strong evidence for concordance of LOH within the same patient for any of the chromosomal loci tested. Atypical for breast carcinomas, 7/46 (15%) turners accumulated a high frequency (ranging from 11 to 29%) of shortened dinucleotide CA repeats, implying microsatellite instability (MI). Further analysis with the highly informative BAT-26 marker allowed for the classification of two of these tumors as having a replication error positive (RER+/MSI-H) phenotype, whereas the remaining five carcinomas harbored so-called borderline MI. Thus an involvement of both RER+ and borderline MI appears to be a distinct feature of bilateral breast carcinomas compared to unilateral lesions. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Genetic diversity estimates based on morphological and molecular data can provide different information on the relationship between cultivars of a species. This study aimed to develop new microsatellite markers as additional tools in genetic studies on mangoes (Mangifera indica L.), and to analyze the genetic variability of 20 mango cultivars based on morphological descriptors and microsatellite markers. We aimed to better understand the cultivars enhanced breeding histories and to support crossbreeding planning. Positive clones were selected from a DNA library enriched for microsatellite regions for sequencing and primer design. Four plants of each of the 20 accessions were used for observations, based on 48 morphological descriptors. Twenty accessions were analyzed using 27 microsatellite markers, of which 16 were developed during this study. The clusters, based on the morphological descriptors by Ward - MLM strategy and the microsatellite markers, suggested that Brazilian mango cultivars have extensive genetic diversity and are related to cultivars with different provenances, demonstrating their different enhanced breeding histories.
Resumo:
Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.
Resumo:
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Resumo:
Tabebuia cassinoides (Lam.) DC., popularly known as caxeta, is a tree species that belongs to the plant family Bignoniaceae. This species is endemic to the Brazilian Atlantic Forest and is widely exploited commercially. To date, little is known about its genetic structure, preventing the establishment of adequate management plans for this taxon. The objective of this study was to construct a microsatellite-enriched genomic library for T. cassinoides to select polymorphic loci, and standardize polymerase chain reaction amplification conditions. Of the 15 loci examined, 5 were polymorphic. The number of alleles per locus ranged from 2 to 8, with a mean of 4.4. The microsatellite loci described here represent the basis for detailed population genetic studies of this species, which will greatly contribute for the development of better conservation strategies for this taxon.
Resumo:
• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.