958 resultados para microbial metabolites
Resumo:
Saliva contains a number of biochemical components which may be useful for diagnosis/monitoring of metabolic disorders, and as markers of cancer or heart disease. Saliva collection is attractive as a non-invasive sampling method for infants and elderly patients. We present a method suitable for saliva collection from neonates. We have applied this technique for the determination of salivary nucleotide metabolites. Saliva was collected from 10 healthy neonates using washed cotton swabs, and directly from 10 adults. Two methods for saliva extraction from oral swabs were evaluated. The analytes were then separated using high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The limits of detection for 14 purine/pyrimidine metabolites were variable, ranging from 0.01 to 1.0 mu M. Recovery of hydrophobic purine/pyrimidine metabolites from cotton tips was consistently high using water/acetonitrile extraction (92.7-111%) compared with water extraction alone. The concentrations of these metabolites were significantly higher in neonatal saliva than in adults. Preliminary ranges for nucleotide metabolites in neonatal and adult saliva are reported. Hypoxanthine and xanthine were grossly raised in neonates (49.3 +/- 25.4; 30.9 +/- 19.5 mu M respectively) compared to adults (4.3 +/- 3.3; 4.6 +/- 4.5 mu M); nucleosides were also markedly raised in neonates. This study focuses on three essential details: contamination of oral swabs during manufacturing and how to overcome this; weighing swabs to accurately measure small saliva volumes; and methods for extracting saliva metabolites of interest from cotton swabs. A method is described for determining nucleotide metabolites using HPLC with photo-diode array or MS/MS. The advantages of utilising saliva are highlighted. Nucleotide metabolites were not simply in equilibrium with plasma, but may be actively secreted into saliva, and this process is more active in neonates than adults. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Diarrhoea is a common complication observed in critically ill patients. Relationships between diarrhoea, enteral nutrition and aerobic intestinal microflora have been disconnectedly examined in this patient cohort. This research used a two-study, observational design to examine these associations. Higher diarrhoea incidence rates were observed when patients received enteral tube feeding, had abnormal serum blood results, received multiple medications and had aerobic microflora dysbiosis. Further, significant aerobic intestinal microflora changes were observed over time in patients who experienced diarrhoea. These results establish a platform for further work to improve the intestinal health of critically ill patients.
Resumo:
Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer.
Resumo:
In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
Resumo:
This study explores the potential use of empty fruit bunch (EFB) residues from palm oil processing residues, as an alternative feedstock for microbial oil production. EFB is a readily available, lignocellulosic biomass that provides cheaper substrates for oil production in comparison to the use of pure sugars. In this study, potential oleaginous microorganisms were selected based on a multi-criteria analysis (MCA) framework which utilised Analytical Hierarchy Process (AHP) with Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA). The MCA framework was used to evaluate several strains of microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa) and fungi (Aspergillus oryzae and Mucor plumbeus) on glucose, xylose and glycerol. Based on the results of PROMETHEE rankings and GAIA plane, fungal strains A. oryzae and M. plumbeus and yeast strain R. mucilaginosa showed great promise for oil production from lignocellulosic hydrolysates. The study further cultivated A. oryzae, M. plumbeus and R. mucilaginosa on EFB hydrolysates for oil production. EFB was pretreated with dilute sulfuric acid, followed by enzymatic saccharification of solid residue. Hydrolysates tested in this study are detoxified liquid hydrolysates (LH) and enzymatic hydrolysate (EH).
Resumo:
Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
While virulence factors and the biofilm-forming capabilities of microbes are the key regulators of the wound healing process, the host immune response may also contribute in the events following wound closure or exacerbation of non-closure. We examined samples from diabetic and non-diabetic foot ulcers/wounds for microbial association and tested the microbes for their antibiotic susceptibility and ability to produce biofilms. A total of 1074 bacterial strains were obtained with staphylococci, Pseudomonas, Citrobacter and enterococci as major colonizers in diabetic samples. Though non-diabetic samples had a similar assemblage, the frequency of occurrence of different groups of bacteria was different. Gram-negative bacteria were found to be more prevalent in the diabetic wound environment while Gram-positive bacteria were predominant in non-diabetic ulcers. A higher frequency of monomicrobial infection was observed in samples from non-diabetic individuals when compared to samples from diabetic patients. The prevalence of different groups of bacteria varied when the samples were stratified according to age and sex of the individuals. Several multidrug-resistant strains were observed among the samples tested and most of these strains produced moderate to high levels of biofilms. The weakened immune response in diabetic individuals and synergism among pathogenic micro-organisms may be the critical factors that determine the delicate balance of the wound healing process.
Resumo:
An apparatus is described that facilitates the determination of incorporation levels of isotope labelled, gaseous precursors into volatile insect-derived metabolites. Atmospheres of varying gas compositions can be generated by evacuation of a working chamber followed by admission of the required levels of component gases, using a precision, digitised pressure read-out system. Insects such as fruit-flies are located initially in a small introduction chamber, from which migration can occur downwards into the working chamber. The level of incorporation of labelled precursors is continuously assayed by the Solid Phase Micro Extraction (SPME) technique and GC-MS analyses. Experiments with both Bactrocera species (fruit-flies) and a parasitoid wasp, Megarhyssa nortoni nortoni (Cresson) and oxygen-18 labelled dioxygen illustrate the utility of this system. The isotope effects of oxygen-18 on the carbon-13 NMR spectra of 1,7- dioxaspiro[5,5]undecane are also described.
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
Abstract Microbial transformation of N, N-dimethyl-p-phenylene diamine (DMPDA), a microbial product formed from the fungicide fenaminosulf (p-dimethylaminobenzenediazo sodium sulfonate) was studied by enriching microbes in soils treated with the amine. Microorganisms isolated from DMPDA-treated soil belonged to the genera of Micrococcus, Alcaligenes, and Corynebacterium. Of the various isolates, Alcaligenes DM4 showed maximal growth on DMPDA utilizing it as sources of carbon and nitrogen. When grown in mineral salts basal medium containing 0.05% DMPDA to serve as carbon and nitrogen sources, Alcaligenes DM4 grew exponentially up to 18 h. Even though the characterization of the complete pathway of microbial degradation of DMPDA could not be carried out due to the auto-oxidation of the compound, the initial transformation product of DMPDA by Alcaligenes DM4 has been identified as a dimer. The dimer is generated into the culture medium presumably by the extra-cellular oxidase of Alcaligenes DM4. It is suggested that the risk-benefit evaluation on the use of fenaminosulf is to be made taking into consideration the microbial transformations of the fungicide.
Resumo:
Keeping in view the prospects of biodegradable polymers, a polymer was synthesized by the condensation of carboxy-terminated polybutadiene (CTPB) of Mnsim-5000 with glycerol and tested for its microbial susceptibility. The results of end group estimations and viscosity measurements indicated a quantitative reaction between the two reactants under experimental conditions. The clear-zone method was employed in this investigation to test biodegradability. Two strains of Serratia and three strains of Staphylococcus did show a clear zone surrounding the colony. However, the microbial growth was found to diminish after 4 or 5 days.
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.