988 resultados para microbial efficiency
Resumo:
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H, and volatile acids` producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H-2 by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H-2/mol sucrose), 20% (1.6 mol H-2/mol sucrose), 15% (1.2 mol H-2/mol sucrose) and 4% (0.3 mol H-2/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1)of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of similar to 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.
Resumo:
Nowadays there are several ways of supplying hot water for showers in residential buildings. One of them is the use of electric storage water heaters (boilers). This equipment raises the water temperature in a reservoir (tank) using the heat generated by an electric resistance. The behavior of this equipment in Brazil is still a research object and there is not a standard in the country to regulate its efficiency. In this context, an experimental program was conducted aiming to collect power consumption data to evaluate its performance. The boilers underwent an operation cycle to simulate a usage condition aiming to collect parameters for calculating the efficiency. This 1-day cycle was composed of the following phases: hot water withdrawal, reheating and standby heat loss. The methods allowed the identification of different parameters concerning the boilers work, such as: standby heat loss in 24 h, hot water withdrawal rate, reheating time and energy efficiency. The average energy efficiency obtained was of 75%. The lowest efficiency was of 62% for boiler 2 and the highest was of 85% for boiler 9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacteria] pathogen transmitted by several Sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L) and citrus [Citrus sinensis (L) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret) I sharpshooters that Occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In Citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%) but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations. vector efficiency in coffee and Citrus is lower than that reported in other hosts.
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objectives of this study were to determine if percentage Bos taurus (0 or 50%) of the cow had an effect on ME requirements and milk production, and to compare cow/calf efficiency among 3 mating systems. Metabolizable energy requirements were estimated during a feeding trial that encompassed a gestation and lactation feeding trial for each of 2 groups of cows. Cows were 0 or 50% Bos taurus ( 100 or 50% Nellore) breed type: Nellore cows (NL; n = 10) mated to Nellore bulls, NL cows ( n = 9) mated to Angus bulls, Angus x Nellore (ANL; n = 10) and Simmental x Nellore (SNL; n = 10) cows mated to Canchim (5/ 8 Charolais 3/ 8 Zebu) bulls. Cows were individually fed a total mixed diet that contained 11.3% CP and 2.23 Mcal of ME/kg of DM. At 14-d intervals, cows and calves were weighed and the amount of DM was adjusted to keep shrunk BW and BCS of cows constant. Beginning at 38 d of age, corn silage was available to calves ad libitum. Milk production at 42, 98, 126, and 180 d postpartum was measured using the weigh-suckle-weigh technique. At 190 d of age, calves were slaughtered and body composition estimated using 9-10-11th-rib section to obtain energy deposition. Regression of BW change on daily ME intake (MEI) was used to estimate MEI at zero BW change. Increase in percentage Bos taurus had a significant effect on daily ME requirements (Mcal/d) during pregnancy (P < 0.01) and lactation (P < 0.01). Percentage Bos taurus had a positive linear effect on maintenance requirements of pregnant (P = 0.07) and lactating (P < 0.01) cows; during pregnancy, the ME requirements were 91 and 86% of those in lactation (131 +/- 3.5 vs. 145 +/- 3.4 Mcal.kg(-0.75).d(-1)) for the 0 and 50% B. taurus groups, respectively. The 50% B. taurus cows, ANL and SNL, suckling crossbred calves had greater total MEI (4,319 +/- 61 Mcal; P < 0.01) than 0% B. taurus cows suckling NL (3,484 +/- 86 Mcal) or ANL calves (3,600 +/- 91 Mcal). The 0% B. taurus cows suckling ANL calves were more efficient (45.3 +/- 1.6 g/Mcal; P = 0.03) than straightbred NL (35.1 +/- 1.5 g/Mcal) and ANL or SNL pairs (41.0 +/- 1.0 g/Mcal). Under the conditions of this study, crossbreeding improved cow/ calf efficiency and showed an advantage for cows that have lower energy requirements.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg-1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K x genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera BRA 01596 BRSMG Curinga BRS 032033 BRS Bonanca BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.
Resumo:
With the aim to study the water efficiency on the muskmelon hydroponics during a long cycle of crop and with different intervals between irrigation was carried out an experiment in two season from October 2003 to January 2004 (season I) and from January to April (season II). The experiment was carried out on the Fitotecnia Department on the Universidade Federal of Santa Maria, Santa Maria, RS. Were determined the water consumptions on the growth of the plants to observe the water efficiency. The water efficiency was a maximum on the blossom phase (4.19g de FS m(-3)) on the season I and on the vegetative phase (8.22g de FS m(-3)) for season II, associated with an elevated growth rate and small water consumptions on these seasons.
Resumo:
This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.
Resumo:
Even though the synthetic preservatives may offer a high antimicrobial efficacy, they are commonly related to adverse reactions and regarded as having potentially harmful effects caused by chronic consumption. The development of natural preservatives provides a way of reducing the amount of synthetic preservatives normally used in pharmaceutical and cosmetic preparations. In addition, these agents have less toxic effects and represent a possible natural and safer alternative of the preservatives. The purpose of this research was to evaluate the Rubus rosaefolius Smith extract efficiency as a natural preservative in base formulations. Of the extract, 0.2% (w/w) was assayed for its effectiveness of antimicrobial protection in two different base formulations (emulsion and gel). The microbial challenge test was performed following the standard procedures proposed by The United States Pharmacopoeia 33nd, European Pharmacopoeia 6th, Japanese Pharmacopoeia 15th, and the Cosmetics, Toiletries, and Fragrance Association using standardized microorganisms. The results demonstrated that R. rosaefolius extract at the studied concentration reduced the bacterial inocula, satisfying the criterion in all formulations, even though it was not able to present an effective preservative behavior against fungi. Thus, the investigation of new natural substances with preservative properties that could be applied in pharmaceutical and cosmetic products is relevant due to the possibility of substituting or decreasing the concentration of synthetic preservatives, providing a way for the development of safer formulas for the use of consumers.