994 resultados para metal-air


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent study indicated that the water-saturated ionic liquid (IL) trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) provided a viable electrolyte for a Mg-air battery. However, there is limited literature on the properties of IL-water mixtures as battery electrolytes. The physical properties of [P6,6,6,14][Cl] were studied with the addition of both water and metal salts (MgCl2 and LiCl) using conductivity and self-diffusion coefficient measurements. The conductivity of the samples at low water concentrations is surprisingly enhanced by the addition of the metal salt, contrary to lithium IL electrolytes. It was also found that the conductivity of the IL was increased by an order of magnitude by saturation with water. NMR diffusion measurements were used to probe the behaviour of both the cation and the water in the mixtures. It was found that the addition of metal salts to the water-saturated [P6,6,6,14][Cl] did not affect the transport properties of the water or cation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As reported previously, water saturated trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) ionic liquid (IL) is a promising electrolyte for magnesium-air batteries. The added water plays an important role in enabling high rate and high efficiency Mg dissolution while stabilizing the Mg interphase. In this work, the role of the water was investigated by replacement with other additives such as toluene and tetrahydrofuran to specifically target the assumed roles of water, namely: (i) enhancement of transport properties; (ii) complexation and stabilization of the Mg anode; (iii) provision of active protons for the cathodic reaction. Discharge tests show that ethylene glycol supports comparable performance to that provided by water. Examination of the viscosity and conductivity of different [P6,6,6,14][Cl]/additive mixtures indicates that a simple consideration of solution characteristics cannot explain the observed trends. Rather, other factors, such as the presence of active protons and/or oxygen-donor groups, are also key features for the development of IL electrolytes for practical magnesium-air cells. Finally, the presence of ethylene glycol in the electrolyte results in a complex gel on the Mg interface, similar to that found in the presence of water. This may also play a role in enabling stable discharge of the Mg anode. © 2014 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of transition metal nitrides and oxynitrides, which are actively investigated today as electrode materials in a wide range of energy conversion and storage devices, possess an oxide layer on the surface. Upon exposure to ambient air, properties of this layer progressively change in the process known as "ageing". Since a number of electrochemical processes involve the surface or sub-surface layers of the active electrode compounds only, ageing could have a significant effect on the overall performance of energy conversion and storage devices. In this work, the influence of the ageing of tungsten and molybdenum oxynitrides on their electrochemical properties in supercapacitors is explored for the first time. Samples are synthesised by the temperature-programmed reduction in NH3 and are treated with different gases prior to exposure to air in order to evaluate the role of passivation in the ageing process. After the synthesis, products are subjected to controlled ageing and are characterised by low temperature nitrogen adsorption, X-ray photoelectron spectroscopy and transmission electron microscopy. Capacitive properties of the compounds are evaluated by performing cyclic voltammetry and galvanostatic charge and discharge measurements in the 1 M H2SO4 electrolyte. © 2014 the Partner Organisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1946 graduate of the Sheet Metal Department, Thomas Carlough is pictured at work at the Triangle Sheet Metal Works, Inc. Original caption reads, "Thomas Carlough - Sheet Metal 1946. The Sheet Metal Draftsman lays out the duct work etc, for the ventilation and Air Conditioning of buildings." Black and white photograph with caption adhered to reverse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the results, analyses and conclusions about a study carried out with objective of minimizing the thermal cracks formation on cemented carbide inserts during face milling. The main focus of investigation was based on the observation that milling process is an interrupted machining process, which imposes cyclic thermal loads to the cutting tool, causing frequent stresses changes in its superficial and sub-superficial layers. These characteristics cause the formation of perpendicular cracks from cutting edge which aid the cutting tool wear, reducing its life. Several works on this subject emphasizing the thermal cyclic behavior imposed by the milling process as the main responsible for thermal cracks formation have been published. In these cases, the phenomenon appears as a consequence of the difference in temperature experienced by the cutting tool with each rotation of the cutter, usually defined as the difference between the temperatures in the cutting tool wedge at the end of the cutting and idle periods (T factor). Thus, a technique to minimize this cyclic behavior with objective of transforming the milling in an almost-continuous process in terms of temperature was proposed. In this case, a hot air stream was applied into the idle period, during the machining process. This procedure aimed to minimize the T factor. This technique was applied using three values of temperature from the hot air stream (100, 350 e 580 oC) with no cutting fluid (dry condition) and with cutting fluid mist (wet condition) using the hot air stream at 580oC. Besides, trials at room temperature were carried out. Afterwards the inserts were analyzed using a scanning electron microscope, where the quantity of thermal cracks generated in each condition, the wear and others damages was analyzed. In a general way, it was found that the heating of the idle period was positive for reducing the number of thermal cracks during face milling with cemented carbide inserts. Further, the cutting fluid mist application was effective in reducing the wear of the cutting tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple model is developed for the admittance of a metal-insulator-semiconductor (MIS) capacitor which includes the effect of a guard ring surrounding the Ohmic contact to the semiconductor. The model predicts most of the features observed in a MIS capacitor fabricated using regioregular poly(3-hexylthiophene) as the active semiconductor and polysilsesquioxane as the gate insulator. In particular, it shows that when the capacitor is driven into accumulation, the parasitic transistor formed by the guard ring and Ohmic contact can give rise to an additional feature in the admittance-voltage plot that could be mistaken for interface states. When this artifact and underlying losses in the bulk semiconductor are accounted for, the remaining experimental feature, a peak in the loss-voltage plot when the capacitor is in depletion, is identified as an interface (or near interface) state of density of similar to 4 x 10(10) cm(-2) eV(-1). Application of the model shows that exposure of a vacuum-annealed device to laboratory air produces a rapid change in the doping density in the channel region of the parasitic transistor but only slow changes in the bulk semiconductor covered by the gold Ohmic contact. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Method and Materials: Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-mu m aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 10x magnification. Results: the G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. Conclusion: While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal behaviour of polymetallic metal carbonyls containing Fe-Fe, Fe-Hg and Hg-Hg bonds and Lewis bases, such as [Fe-3(CO)(8)(L)(2)] (L = 1,10-phenantroline,2,2'-bipyridine), [Fe(CO)(4)(HgCl)(2)] and [Fe(CO)(4)(HgCl)(2)(L)(2)] (L = 1,10-phenantroline,2-quinolinethiol), have been investigated by thermal analysis (TG), Thermal studies give evidence that the thermal decomposition mechanisms and starting temperatures are strongly influenced by the Lewis bases. The thermal decompositions under synthetic air yielded, in all cases, the final solid product Fe2O3 which presence was confirmed by X-ray powder diffraction technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH(2)C(2)O(3))(2)center dot nH(2)O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH(2)C(2)O(3)) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N(2) atmospheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study describes the efficiency of heterogeneous photocatalytic reactor for the inactivation of three air born bacteria, Escherichia coli, Bacillus subtilis and Staphylococcus aureus using metal modified TiO2 photocatalysts and blacklight irradiation. The catalysts were prepared by photodeposition of silver, palladium or iron on commercial TiO2, immobilized on glass plates. X-ray photoelectron spectroscopy analysis was applied to determine the atomic percentage and species of each metal on the TiO2 surface, showing that 85% of silver, 73% of palladium and 45% of iron were present in metallic form on TiO2 surface. The plates were positioned on the inner lateral walls of a chamber through which the contaminated air flow passed for disinfection. Irradiation of bare TiO 2 resulted in 50% inactivation of E. coli while 41% and 35% inactivation of B. subtilis and S. aureus were obtained, respectively. When metal modified TiO2 was applied, the inactivation of B. subtilis was improved to 91% using Pd-TiO2 while of S. aureus was improved to 94% with Fe-TiO2, showing in this case no significant difference when compared to Ag-TiO2 and Pd-TiO2. In contrast, inactivation of E. coli was not significantly increased when metal modified TiO2 was used, ranging from 47% to 57%. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific collections are important sources of material for many areas of ornithological research. Although firearms (particularly shotguns) have been the standard for avian scientific collecting for more than 100 years, their use is restricted in many areas of the world. We describe a cheap, relatively silent, and effective air shotgun for collecting birds weighing up to 50 g at distances up to 4 m. This air shotgun is capable of shooting birdshot, uses hollow metal rivets connected to plastic straws as shot shells, and represents a simple adaptation of any 0.177 or 0.22 cal single-shot, break-barrel air rifle with at least 25 joules of muzzle energy. This air shotgun will be especially useful for focused sampling of birds (and other small vertebrates) in situations where firearm use or transport is restricted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors "alloy" and "casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.