984 resultados para metal nanoparticle
Resumo:
We demonstrate a novel way to actively tune surface plasmons by fabricating plasmonic nanostructures on stretchable elastomeric films. This allows reversible modification of the metal geometry on the nanometer scale. Using 100 nm scale Au nanoparticle dimers whose spacing is stretch-tuned reveals radically different spectral tuning than previously reported for sub-10-nm nanoparticles, but which can be explained by a revised interpretation of existing models. Tuning plasmons in this way offers a much more robust way than lithography to interrogate the physics of localized plasmons and has applications in optimized surface-enhanced luminescence and Raman scattering.
Resumo:
The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a “reference” protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.
Resumo:
We describe in this article the application of a high-density gas aggregation nanoparticle gun to the production and characterization of high anisotropy SmCo nanoparticles. We give a detailed description of the simple but efficient experimental apparatus with a focus on the microscopic processes of the gas aggregation technique. Using high values of gas flux (similar to 45 sccm) we are able to operate in regimes of high collimation of material. In this regime, as we explain in terms of a phenomenological model, the power applied to the sputtering target becomes the main variable to change the size of the clusters. Also presented are the morphological, structural, and magnetic characterizations of SmCo nanoparticles produced using 10 and 50 W of sputtering power. These values resulted in mean sizes of similar to 12 and similar to 20 nm. Significant differences are seen in the structural and magnetic properties of the samples with the 50 W sample showing a largely enhanced crystalline structure and magnetic anisotropy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of the relationship between particle size (d), inter-particle distance (x(i)), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x(i)/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x(i)/d can be always obtained. For y >= 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x(i)/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x(i)/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x(i)/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
Resumo:
We report on a strategy to prepare metal oxides including binary oxide and mixed metal oxide (MMO) in form of nanometer-sized particles using polymer as precursor. Zinc oxide nanoparticles are prepared as an example. The obtained zinc polyacrylate precursor is amorphous as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The conversion from polymer precursor to ZnO nanocrystals by thermal pyrolysis was investigated by means of XRD, thermogravimetric analysis (TGA) and electron microscopy. The as-synthesized ZnO consists of many individual particles with a diameter around 40 nm as shown by scanning electron microscopy (SEM). The photoluminescence (PL) and electron paramagnetic (EPR) properties of the material are investigated, too. Employing this method, ZnO nanocrystalline films are fabricated via pyrolysis of a zinc polyacrylate precursor film on solid substrate like silicon and quartz glass. The results of XRD, absorption spectra as well as TEM prove that both the ZnO nanopowder and film undergo same evolution process. Comparing the PL properties of films fabricated in different gas atmosphere, it is assigned that the blue emission of the ZnO films is due to crystal defect of zinc vacancy and green emission from oxygen vacancy. Two kinds of ZnO-based mixed metal oxide (Zn1-xMgxO and Zn1-xCoxO) particles with very precise stoichiometry are prepared by controlled pyrolysis of the corresponding polymer precursor at 550 oC. The MMO crystal particles are typically 20-50 nm in diameter. Doping of Mg in ZnO lattice causes shrinkage of lattice parameter c, while it remains unchanged with Co incorporation. Effects of bandgap engineering are seen in the Mg:ZnO system. The photoluminescence in the visible is enhanced by incorporation of magnesium on zinc lattice sites, while the emission is suppressed in the Co:ZnO system. Magnetic property of cobalt doped-ZnO is checked too and ferromagnetic ordering was not found in our samples. An alternative way to prepare zinc oxide nanoparticles is presented upon calcination of zinc-loaded polymer precursors, which is synthesized via inverse miniemulsion polymerization of the mixture of the acrylic acid and zinc nitrate. The as-prepared ZnO product is compared with that obtained from polymer-salt complex method. The obtained ZnO nanoparticles undergo surface modification via a phosphate modifier applying ultrasonication. The morphology of the modified particles is checked by SEM. And stability of the ZnO nanoparticles in aqueous dispersion is enhanced as indicated by the zeta-potential results.
Resumo:
Plasmons in metal nanoparticles respond to changes in their local environment by a spectral shift in resonance. Here, the potential of plasmonic metal nanoparticles for label-free detection and observation of biological systems is presented. Comparing the material silver and gold concerning plasmonic sensitivity, silver nanoparticles exhibit a higher sensitivity but their chemical instability under light exposure limits general usage. A new approach combining results from optical dark-field microscopy and transmission electron microscopy allows localization and quantification of gold nanoparticles internalized into living cells. Nanorods exposing a negatively charged biocompatible polymer seem to be promising candidates to sense membrane fluctuations of adherent cells. Many small nanoparticles being specific sensing elements can build up a sensor for parallel analyte detection without need of labeling, which is easy to fabricate, re-usable, and has sensitivity down to nanomolar concentrations. Besides analyte detection, binding kinetics of various partner proteins interacting with one protein of interest are accessible in parallel. Gold nanoparticles are able to sense local oscillations in the surface density of proteins on a lipid bilayer, which could not be resolved so far. Studies on the fluorescently labeled system and the unlabeled system identify an influence of the label on the kinetics.
Resumo:
The use of metal chelators is becoming increasingly important in the development of new tracers for molecular imaging. With the rise of the field of nanotechnology, the fusion of both technologies has shown great potential for clinical applications. The pharmacokinetcs of nanoparticles can be monitored via positron emission tomography (PET) after surface modification and radiolabeling with positron emitting radionuclides. Different metal ion chelators can be used to facilitate labeling of the radionuclides and as a prerequisite, optimized radiolabeling procedure is necessary to prevent nanoparticle aggregation and degradation. However, the effects of chelator modification on nanoparticle pharmacokinetic properties have not been well studied and currently no studies to date have compared the biological effects of the use of different chelators in the surface modification of nanoparticles.
Resumo:
High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion.
Resumo:
N-Heterocyclic carbene coated Au and Pd nanoparticles have been prepared by a ligand exchange reaction; although carbenes quantitatively displaced the thioether and phosphine ligands from the nanoparticle surface, the resultant nanoparticles spontaneously leached metal complexes and aggregated in solution. © 2009 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Resumo:
We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.
Resumo:
As time advances, man has been able to control technology in finer and finer detail. The microelectronics era is an example of this, with control down to the micrometer. Experts agree that we may be entering a new era, controlling technology down to the nanometer. One aspect of such control is making materials in the nanometer range, i.e. nanoparticles. For this purpose, a new magnetron-sputtering gun, inert gas condensation, nanoparticle source has been designed, built, and tested. ^ Films made from cobalt, nickel, tantalum, molybdenum, chromium, and aluminum have been investigated. Transmission Electron Microscope measurements done at the University of Illinois confirm the thin films are nanostructured. This was also confirmed by Atomic Force Microscope measurements made at the F.I.U. Thin Film Laboratory. ^ Composition, optical and magnetic properties have been measured. In most cases, unique properties have been found that differ significantly from bulk properties. Rutherford Backscattering measurements done at the University of Illinois determined significant percentages of oxygen and carbon in the samples, possibly due to interactions with air. Because of this, optical properties are a composite of oxide, metal, and void properties. Magnetic materials were determined to have spin-glass properties below the irreversibility temperature and superparamagnetic properties above it. Indications of possible future uses for these nanostructured materials are discussed. ^
Resumo:
A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.
Resumo:
The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.
Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.
In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.