954 resultados para maximized monte Carlo test
Resumo:
Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
Due to their small collecting volume diodes are commonly used in small field dosimetry. However the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm . The metric D_(w,Q)/D_(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D_(w,Q)/D_(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D_(w,Q)/D_(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3 mm, 1.15 mm and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_(Q_clin 〖,Q〗_msr)^(f_clin 〖,f〗_msr ) was equal to unity to within statistical uncertainty (0.5 %) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.
Resumo:
Purpose: Electronic Portal Imaging Devices (EPIDs) are available with most linear accelerators (Amonuk, 2002), the current technology being amorphous silicon flat panel imagers. EPIDs are currently used routinely in patient positioning before radiotherapy treatments. There has been an increasing interest in using EPID technology tor dosimetric verification of radiotherapy treatments (van Elmpt, 2008). A straightforward technique involves the EPID panel being used to measure the fluence exiting the patient during a treatment which is then compared to a prediction of the fluence based on the treatment plan. However, there are a number of significant limitations which exist in this Method: Resulting in a limited proliferation ot this technique in a clinical environment. In this paper, we aim to present a technique of simulating IMRT fields using Monte Carlo to predict the dose in an EPID which can then be compared to the measured dose in the EPID. Materials: Measurements were made using an iView GT flat panel a-SI EPfD mounted on an Elekta Synergy linear accelerator. The images from the EPID were acquired using the XIS software (Heimann Imaging Systems). Monte Carlo simulations were performed using the BEAMnrc and DOSXVZnrc user codes. The IMRT fieids to be delivered were taken from the treatment planning system in DICOMRT format and converted into BEAMnrc and DOSXYZnrc input files using an in-house application (Crowe, 2009). Additionally. all image processing and analysis was performed using another in-house application written using the Interactive Data Language (IDL) (In Visual Information Systems). Comparison between the measured and Monte Carlo EPID images was performed using a gamma analysis (Low, 1998) incorporating dose and distance to agreement criteria. Results: The fluence maps recorded by the EPID were found to provide good agreement between measured and simulated data. Figure 1 shows an example of measured and simulated IMRT dose images and profiles in the x and y directions. "A technique for the quantitative evaluation of dose distributions", Med Phys, 25(5) May 1998 S. Crowe, 1. Kairn, A. Fielding, "The Development of a Monte Carlo system to verify Radiotherapy treatment dose calculations", Radiotherapy & Oncology, Volume 92, Supplement 1, August 2009, Pages S71-S71.
Resumo:
Introduction: Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo (MC) methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the ‘gold standard’ for predicting dose deposition in the patient [1]. This project has three main aims: 1. To develop tools that enable the transfer of treatment plan information from the treatment planning system (TPS) to a MC dose calculation engine. 2. To develop tools for comparing the 3D dose distributions calculated by the TPS and the MC dose engine. 3. To investigate the radiobiological significance of any errors between the TPS patient dose distribution and the MC dose distribution in terms of Tumour Control Probability (TCP) and Normal Tissue Complication Probabilities (NTCP). The work presented here addresses the first two aims. Methods: (1a) Plan Importing: A database of commissioned accelerator models (Elekta Precise and Varian 2100CD) has been developed for treatment simulations in the MC system (EGSnrc/BEAMnrc). Beam descriptions can be exported from the TPS using the widespread DICOM framework, and the resultant files are parsed with the assistance of a software library (PixelMed Java DICOM Toolkit). The information in these files (such as the monitor units, the jaw positions and gantry orientation) is used to construct a plan-specific accelerator model which allows an accurate simulation of the patient treatment field. (1b) Dose Simulation: The calculation of a dose distribution requires patient CT images which are prepared for the MC simulation using a tool (CTCREATE) packaged with the system. Beam simulation results are converted to absolute dose per- MU using calibration factors recorded during the commissioning process and treatment simulation. These distributions are combined according to the MU meter settings stored in the exported plan to produce an accurate description of the prescribed dose to the patient. (2) Dose Comparison: TPS dose calculations can be obtained using either a DICOM export or by direct retrieval of binary dose files from the file system. Dose difference, gamma evaluation and normalised dose difference algorithms [2] were employed for the comparison of the TPS dose distribution and the MC dose distribution. These implementations are spatial resolution independent and able to interpolate for comparisons. Results and Discussion: The tools successfully produced Monte Carlo input files for a variety of plans exported from the Eclipse (Varian Medical Systems) and Pinnacle (Philips Medical Systems) planning systems: ranging in complexity from a single uniform square field to a five-field step and shoot IMRT treatment. The simulation of collimated beams has been verified geometrically, and validation of dose distributions in a simple body phantom (QUASAR) will follow. The developed dose comparison algorithms have also been tested with controlled dose distribution changes. Conclusion: The capability of the developed code to independently process treatment plans has been demonstrated. A number of limitations exist: only static fields are currently supported (dynamic wedges and dynamic IMRT will require further development), and the process has not been tested for planning systems other than Eclipse and Pinnacle. The tools will be used to independently assess the accuracy of the current treatment planning system dose calculation algorithms for complex treatment deliveries such as IMRT in treatment sites where patient inhomogeneities are expected to be significant. Acknowledgements: Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. Pinnacle dose parsing made possible with the help of Paul Reich, North Coast Cancer Institute, North Coast, New South Wales.
Resumo:
The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.26 to 0.64 cm, for the MLC, from 0.12 to 0.43 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.
Resumo:
Standard Monte Carlo (sMC) simulation models have been widely used in AEC industry research to address system uncertainties. Although the benefits of probabilistic simulation analyses over deterministic methods are well documented, the sMC simulation technique is quite sensitive to the probability distributions of the input variables. This phenomenon becomes highly pronounced when the region of interest within the joint probability distribution (a function of the input variables) is small. In such cases, the standard Monte Carlo approach is often impractical from a computational standpoint. In this paper, a comparative analysis of standard Monte Carlo simulation to Markov Chain Monte Carlo with subset simulation (MCMC/ss) is presented. The MCMC/ss technique constitutes a more complex simulation method (relative to sMC), wherein a structured sampling algorithm is employed in place of completely randomized sampling. Consequently, gains in computational efficiency can be made. The two simulation methods are compared via theoretical case studies.