817 resultados para mathematical tasks
Resumo:
This paper reports on the research and development of an ICT tool to facilitate the learning of ratio and fractions by adult prisoners. The design of the ICT tool was informed by a semiotic framework for mathematical meaning-making. The ICT tool thus employed multiple semiotic resources including topological, typological, and social-actional resources. The results showed that individual semiotic resource could only represent part of the mathematical concept, while at the same time it might signify something else to create a misconception. When multiple semiotic resources were utilised the mathematical ideas could be better learnt.
Resumo:
Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.
Resumo:
Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.
Resumo:
Purpose: There have been few studies of visual temporal processing of myopic eyes. This study investigated the visual performance of emmetropic and myopic eyes using a backward visual masking location task. Methods: Data were collected for 39 subjects (15 emmetropes, 12 stable myopes, 12 progressing myopes). In backward visual masking, a target’s visibility is reduced by a mask presented in quick succession ‘after’ the target. The target and mask stimuli were presented at different interstimulus intervals (from 12 to 300 ms). The task involved locating the position of a target letter with both a higher (seven per cent) and a lower (five per cent) contrast. Results: Emmetropic subjects had significantly better performance for the lower contrast location task than the myopes (F2,36 = 22.88; p < 0.001) but there was no difference between the progressing and stable myopic groups (p = 0.911). There were no differences between the groups for the higher contrast location task (F2,36 = 0.72, p = 0.495). No relationship between task performance and either the magnitude of myopia or axial length was found for either task. Conclusions: A location task deficit was observed in myopes only for lower contrast stimuli. Both emmetropic and myopic groups had better performance for the higher contrast task compared to the lower contrast task, with myopes showing considerable improvement. This suggests that five per cent contrast may be the contrast threshold required to bias the task towards the magnocellular system (where myopes have a temporal processing deficit). Alternatively, the task may be sensitive to the contrast sensitivity of the observer.
Resumo:
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the Butter Beans Problem and the Airplane Problem). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data, together with background information containing specific criteria to be considered in the solution process. Four classes of third-graders (8 years of age) and their teachers participated in the 6-month program, which included preparatory modelling activities along with professional development for the teachers. In discussing our findings we address: (a) Ways in which the children applied their informal, personal knowledge to the problems; (b) How the children interpreted the tables of data, including difficulties they experienced; (c) How the children operated on the data, including aggregating and comparing data, and looking for trends and patterns; (c) How the children developed important mathematical ideas; and (d) Ways in which the children represented their mathematical understandings.
Resumo:
Several brain imaging studies have assumed that response conflict is present in Stroop tasks. However, this has not been demonstrated directly. We examined the time-course of stimulus and response conflict resolution in a numerical Stroop task by combining single-trial electro-myography (EMG) and event-related brain potentials (ERP). EMG enabled the direct tracking of response conflict and the peak latency of the P300 ERP wave was used to index stimulus conflict. In correctly responded trials of the incongruent condition EMG detected robust incorrect response hand activation which appeared consistently in single trials. In 50–80% of the trials correct and incorrect response hand activation coincided temporally, while in 20–50% of the trials incorrect hand activation preceded correct hand activation. EMG data provides robust direct evidence for response conflict. However, congruency effects also appeared in the peak latency of the P300 wave which suggests that stimulus conflict also played a role in the Stroop paradigm. Findings are explained by the continuous flow model of information processing: Partially processed task-irrelevant stimulus information can result in stimulus conflict and can prepare incorrect response activity. A robust congruency effect appeared in the amplitude of incongruent vs. congruent ERPs between 330–400 ms, this effect may be related to the activity of the anterior cingulate cortex.
Resumo:
The critical problem of student disengagement and underachievement in the middle years of schooling (Years 4 . 9) has focussed attention on the quality of educational programs in schools, in Australia and elsewhere. The loss of enthusiasm for science in the middle years is particularly problematic given the growing demand for science professionals. Reshaping middle years programs has included an emphasis on integrating Information and Communication Technologies (ICTs) and improving assessment practices to engage students in higher cognitive processes and enhance academic rigour. Understanding the nature of academic rigour and how to embed it in students. science assessment tasks that incorporate the use of ICTs could enable teachers to optimise the quality of the learning environment. However, academic rigour is not clearly described or defined in the literature and there is little empirical evidence upon which researchers and teachers could draw to enhance understandings. This study used a collective case study design to explore teachers' understandings of academic rigour within science assessment tasks. The research design is based on a conceptual framework that is underpinned by socio-cultural theory. Three methods were used to collect data from six middle years teachers and their students. These methods were a survey, focus group discussion with teachers and a group of students and individual semi-structured interviews with teachers. Findings of the case study revealed six criteria of academic rigour, namely, higher order thinking, alignment, building on prior knowledge, scaffolding, knowledge construction and creativity. Results showed that the middle years teachers held rich understandings of academic rigour that led to effective utilisation of ICTs in science assessment tasks. Findings also indicated that teachers could further enhance their understandings of academic rigour in some aspects of each of the criteria. In particular, this study found that academic rigour could have been further optimised by: promoting more thoughtful discourse and interaction to foster higher order thinking; increasing alignment between curriculum, pedagogy, and assessment, and students. prior knowledge; placing greater emphasis on identifying, activating and building on prior knowledge; better differentiating the level of scaffolding provided and applying it more judiciously; fostering creativity throughout tasks; enhancing teachers‟ content knowledge and pedagogical content knowledge, and providing more in-depth coverage of fewer topics to support knowledge construction. Key contributions of this study are a definition and a model which clarify the nature of academic rigour.
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Resumo:
The capacity to solve tasks that contain high concentrations of visual-spatial information, including graphs, maps and diagrams, is becoming increasingly important in educational contexts as well as everyday life. This research examined gender differences in the performance of students solving graphics tasks from the Graphical Languages in Mathematics (GLIM) instrument that included number lines, graphs, maps and diagrams. The participants were 317 Australian students (169 males and 148 females) aged 9 to 12 years. Boys outperformed girls on graphical languages that required the interpretation of information represented on an axis and graphical languages that required movement between two- and three-dimensional representations (generally Map language).