916 resultados para matching score
Resumo:
This paper outlines existing matching diagnostics, which may be used for identifying invalid matches and estimating the probability of a correct match. In addition, it proposes a new diagnostic for error prediction which can be used with the rank and census transforms. Both the existing and the new diagnostics have been evaluated and compared for a number of test images. In each case, a confidence estimate was computed for every location of the disparity map, and disparities having a low confidence estimate removed from the disparity map. Collectively, these confidence estimates may be termed a confidence map. Such information would be useful for potential applications of stereo vision such as automation and navigation.
Resumo:
The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.
Resumo:
Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The authors present a qualitative and quantitative comparison of various similarity measures that form the kernel of common area-based stereo-matching systems. The authors compare classical difference and correlation measures as well as nonparametric measures based on the rank and census transforms for a number of outdoor images. For robotic applications, important considerations include robustness to image defects such as intensity variation and noise, the number of false matches, and computational complexity. In the absence of ground truth data, the authors compare the matching techniques based on the percentage of matches that pass the left-right consistency test. The authors also evaluate the discriminatory power of several match validity measures that are reported in the literature for eliminating false matches and for estimating match confidence. For guidance applications, it is essential to have and estimate of confidence in the three-dimensional points generated by stereo vision. Finally, a new validity measure, the rank constraint, is introduced that is capable of resolving ambiguous matches for rank transform-based matching.
Resumo:
A fundamental problem faced by stereo matching algorithms is the matching or correspondence problem. A wide range of algorithms have been proposed for the correspondence problem. For all matching algorithms, it would be useful to be able to compute a measure of the probability of correctness, or reliability of a match. This paper focuses in particular on one class for matching algorithms, which are based on the rank transform. The interest in these algorithms for stereo matching stems from their invariance to radiometric distortion, and their amenability to fast hardware implementation. This work differs from previous work in that it derives, from first principles, an expression for the probability of a correct match. This method was based on an enumeration of all possible symbols for matching. The theoretical results for disparity error prediction, obtained using this method, were found to agree well with experimental results. However, disadvantages of the technique developed in this chapter are that it is not easily applicable to real images, and also that it is too computationally expensive for practical window sizes. Nevertheless, the exercise provides an interesting and novel analysis of match reliability.
Resumo:
In order to comprehend user information needs by concepts, this paper introduces a novel method to match relevance features with ontological concepts. The method first discovers relevance features from user local instances. Then, a concept matching approach is developed for matching these features to accurate concepts in a global knowledge base. This approach is significant for the transition of informative descriptor and conceptional descriptor. The proposed method is elaborately evaluated by comparing against three information gathering baseline models. The experimental results shows the matching approach is successful and achieves a series of remarkable improvements on search effectiveness.
Resumo:
Data structures such as k-D trees and hierarchical k-means trees perform very well in approximate k nearest neighbour matching, but are only marginally more effective than linear search when performing exact matching in high-dimensional image descriptor data. This paper presents several improvements to linear search that allows it to outperform existing methods and recommends two approaches to exact matching. The first method reduces the number of operations by evaluating the distance measure in order of significance of the query dimensions and terminating when the partial distance exceeds the search threshold. This method does not require preprocessing and significantly outperforms existing methods. The second method improves query speed further by presorting the data using a data structure called d-D sort. The order information is used as a priority queue to reduce the time taken to find the exact match and to restrict the range of data searched. Construction of the d-D sort structure is very simple to implement, does not require any parameter tuning, and requires significantly less time than the best-performing tree structure, and data can be added to the structure relatively efficiently.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Objective: To determine the impact of a free-choice diet on nutritional intake and body condition of feral horses. Animals: Cadavers of 41 feral horses from 5 Australian locations. Procedures: Body condition score (BCS) was determined (scale of 1 to 9), and the stomach was removed from horses during postmortem examination. Stomach contents were analyzed for nutritional variables and macroelement and microelement concentrations. Data were compared among the locations and also compared with recommended daily intakes for horses. Results: Mean BCS varied by location; all horses were judged to be moderately thin. The BCS for males was 1 to 3 points higher than that of females. Amount of protein in the stomach contents varied from 4.3% to 14.9% and was significantly associated with BCS. Amounts of water-soluble carbohydrate and ethanol-soluble carbohydrate in stomach contents of feral horses from all 5 locations were higher than those expected for horses eating high-quality forage. Some macroelement and microelement concentrations were grossly excessive, whereas others were grossly deficient. There was no evidence of ill health among the horses. Conclusions and Clinical Relevance: Results suggested that the diet for several populations of feral horses in Australia appeared less than optimal. However, neither low BCS nor trace mineral deficiency appeared to affect survival of the horses. Additional studies on food sources in these regions, including analysis of water-soluble carbohydrate, ethanol-soluble carbohydrate, and mineral concentrations, are warranted to determine the provenance of such rich sources of nutrients. Determination of the optimal diet for horses may need revision.