414 resultados para manned submersible


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper reports data on distribution of dissolved (Mn, Zn, Cu, Pb, and Cd) and particulate (Fe, Mn, Zn, Cu, Pb, Ni, and Co) species of metals in hydrothermal plumes above the active TAG and Broken Spur hydrothermal fields (26° N and 29° N in the MAR rift valley, respectively). Sediment trap data on fluxes of hydrothermal sedimentary material in the areas indicate that (i) the predominant Zn source for metalliferous sediments at the TAG field is material precipitating from the neutrally buoyant plume, and (ii) the predominant source of Fe and Co is re-deposited ore material coming from the area of extensive settling of sulfides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two genetically different types of authigenic carbonate mounds are studied: (1) from an active hydrothermal field related to serpentinite protrusions in a zone of intersection of a transform fracture zone with the Mid-Atlantic Ridge, (2) from an active field of methane seepings in the Dnieper canyon of the Black sea. General geochemical conditions, under which authigenic carbonate formation occurs within these two fields, were found. They include: presence of reduced H2S, H2, and CH4 gases at absence of free oxygen; high alkalinity of waters participating in carbonate formation; similarity of textural and structural features of authigenic aragonite, which represents the initial carbonate mineral of the mounds; paragenesis of aragonite with sulfide minerals; close relation of carbonate mounds with communities of sulfate-reducing and methane-oxidizing microorganisms. A new mechanism of formation of hydrothermal authigenic carbonates is suggested. It implies their microbial sulfate reduction over hydrogen from fluid in the subsurface mixing zone of hydrothermal solution and adjacent seawater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isotopic (dD, d18O, d13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of dD and d18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (d18O, d13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.