800 resultados para manipulação


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De um modo geral, os nanomateriais manufaturados (NM) são definidos como materiais fabricados deliberadamente e que contêm partículas com pelo menos uma dimensão externa na gama de tamanhos compreendida entre 1 e 100 nanómetros (Comissão Europeia, 2011). A sua pequena dimensão confere-lhes propriedades físicas, químicas e biológicas que podem diferir bastante das propriedades dos materiais com a mesma composição química mas utilizados numa escala não nanométrica. São as propriedades mecânicas, óticas, elétricas e magnéticas inerentes aos materiais na escala “nano” que os tornam vantajosos para as mais diversas aplicações industriais e biomédicas. Contudo, a enorme expansão que tem vindo a acontecer ao nível da síntese, produção industrial e utilização de NMs contrasta com uma ainda insuficiente avaliação de risco para a saúde humana e para o ambiente. Efectivamente, A European Agency for Safety and Health at Work (EU-OSHA,2009) considerou a exposição a NM como o risco emergente mais premente no contexto da saúde ocupacional, estimando que entre 300.000 a 400.000 postos de trabalho lidavam já directamente com as nanotecnologias. Neste seminário será abordada a possibilidade de exposição ocupacional ao longo do ciclo de vida dos NM, bem como as suas potenciais implicações para a saúde dos trabalhadores. Nesta palestra são apresentados alguns estudos realizados no Instituto Nacional de Saúde Doutor Ricardo Jorge que produziram evidência científica que poderá contribuir para o esforço internacional da regulação da produção e aplicação de nanomateriais, salvaguardando a saúde humana face às suas aplicações inovadoras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present thesis was to use the manipulation of oocytes enclosed in preantral follicles (MOEPF) as a tool for the female gametes rescue and optimization, from wild species of Caatinga biome. The thesis was divided into 4 experiments. At first experiment, it was performed the estimative and description of the agouti (Dasyprocta leporina) preantral follicles (PF) histologic and ultrastructural features, in which it was estimated 4419.8 ± 532.26 and 5397.52 ± 574.91 follicles for the right and left ovary, respectively, and the majority (86,63%) belonged to the primordial follicles category (P<0.05). Most of the population consists of morphologically normal follicles (70.78%), presenting a large and central nuclei and uniform cytoplasm. At ultrastructural evaluation it was verified the presence of a great number of round mitochondrias associated to lipid droplets. In the second experiment, it was performed the estimative and description of yellow-toothed cavies (Galea spixii) PF characteristics, also, the evaluation of the effect of solid surface vitrification (SSV) on the in situ PF morphology. The total of 416.0 ± 342.8 PF was estimated for the ovary pair and the presence of a large quantity of primary follicles (P<0.05) was evidenced. Most of the PF was morphologically normal (94.6%), in which the oocyte nuclei presented condensed granules of heterochromatin. Round or elongated shaped mitochondria constituted the most abundant organelles. In regard of the SSV, the protocol using the dimethylsulfoxide (DMSO) 3M possibility the preservation of 69.5% of morphologically normal PF, which was evidenced by the light and transmission electronic microscopy. At third experiment, the evaluation of the SSV procedure on the morphology and viability in situ PF form collared peccaries (Pecari tajacu) was performed. No differences were observed among treatments, in which the use of DMSO, ethylene glycol (EG) and dimethylformamide (DMF) as cryoprotectants, regardless its concentration, promoted the morphology preservation of much than 70% of PF. Concerning the PF viability, the DMSO and EG promoted the best preservation. The fourth experiment aimed to evaluate the effect of α MEM+ or TCM199 associated or not to 50 ng of FSHr on the morphology, activation and growth of collared peccaries PF, in vitro cultured (IVC) during 1 or 7 days and the effect on the extracellular matrix (ECM). After 7 days of IVC only the use of TCM199/FSH maintained the proportion of intact PF, similar to day 1(63.2%), however, no differences were observed among treatments (P>0.05). Also, an improvement of the proportion of intact growing PF was verified (P>0.05). By the Ag-NOR analysis it was observed that only the treatment using TCM199/FSH promoted the maintenance of cell proliferation similar to day 1 (P>0.05). The picrosirius red stain revealed that ECM remained intact in all treatments (P>0.05). Thus, as the general conclusion, the use of MOEPF in the refereed species allowed the knowledge of aspects related to its reproductive morphology and physiology, enabling the germplasm conservation, with the possibility of germplasm bank formation, as the elucidation of mechanisms related to the PF survive and in vitro development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.