911 resultados para machine recognition
Resumo:
In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.
Resumo:
This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.
Resumo:
The deployment of systems for human-to-machine communication by voice requires overcoming a variety of obstacles that affect the speech-processing technologies. Problems encountered in the field might include variation in speaking style, acoustic noise, ambiguity of language, or confusion on the part of the speaker. The diversity of these practical problems encountered in the "real world" leads to the perceived gap between laboratory and "real-world" performance. To answer the question "What applications can speech technology support today?" the concept of the "degree of difficulty" of an application is introduced. The degree of difficulty depends not only on the demands placed on the speech recognition and speech synthesis technologies but also on the expectations of the user of the system. Experience has shown that deployment of effective speech communication systems requires an iterative process. This paper discusses general deployment principles, which are illustrated by several examples of human-machine communication systems.
Resumo:
This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems.
Resumo:
Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. This thesis proposes novel detection and classification techniques for behavior recognition based on deep brain LFP. Behavior detection from such signals is the vital step in developing the next generation of closed-loop DBS devices. LFP recordings from 13 subjects are utilized in this study to design and evaluate our method. Recordings were performed during the surgery and the subjects were asked to perform various behavioral tasks. Various techniques are used understand how the behaviors modulate the STN. One method studies the time-frequency patterns in the STN LFP during the tasks. Another method measures the temporal inter-hemispheric connectivity of the STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental results demonstrate that different behaviors create different m odulation patterns in STN and it’s connectivity. We use these patterns as features to classify behaviors. A method for single trial recognition of the patient’s current task is proposed. This method uses wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. As the next step, a practical behavior detection method which asynchronously detects behaviors is proposed. This method does not use any priori knowledge of behavior onsets and is capable of asynchronously detect the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity and to detect the finger movements. Our experimental results using STN LFP recorded from eight patients with PD demonstrate this is a promising approach for behavior detection and developing novel closed-loop DBS systems.
Resumo:
This paper tells about the recognition of temporal expressions and the resolution of their temporal reference. A proposal of the units we have used to face up this tasks over a restricted domain is shown. We work with newspapers' articles in Spanish, that is why every reference we use is in Spanish. For the identification and recognition of temporal expressions we base on a temporal expression grammar and for the resolution on a dictionary, where we have the information necessary to do the date operation based on the recognized expressions. In the evaluation of our proposal we have obtained successful results for the examples studied.
Resumo:
The need to digitise music scores has led to the development of Optical Music Recognition (OMR) tools. Unfortunately, the performance of these systems is still far from providing acceptable results. This situation forces the user to be involved in the process due to the need of correcting the mistakes made during recognition. However, this correction is performed over the output of the system, so these interventions are not exploited to improve the performance of the recognition. This work sets the scenario in which human and machine interact to accurately complete the OMR task with the least possible effort for the user.
Resumo:
Paper submitted to MML 2013, 6th International Workshop on Machine Learning and Music, Prague, September 23, 2013.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.
Resumo:
Many attempts have been made to overcome problems involved in character recognition which have resulted in the manufacture of character reading machines. An investigation into a new approach to character recognition is described. Features for recognition are Fourier coefficients. These are generated optically by convolving characters with periodic gratings. The development of hardware to enable automatic measurement of contrast and position of periodic shadows produced by the convolution is described. Fourier coefficients of character sets were measured, many of which are tabulated. Their analysis revealed that a few low frequency sampling points could be selected to recognise sets of numerals. Limited treatment is given to show the effect of type face variations on the values of coefficients which culminated in the location of six sampling frequencies used as features to recognise numerals in two type fonts. Finally, the construction of two character recognition machines is compared and contrasted. The first is a pilot plant based on a test bed optical Fourier analyser, while the second is a more streamlined machine d(3signed for high speed reading. Reasons to indicate that the latter machine would be the most suitable to adapt for industrial and commercial applications are discussed.
Resumo:
The point of departure for this study was a recognition of the differences in suppliers' and acquirers' judgements of the value of technology when transferred between the two, and the significant impacts of technology valuation on the establishment of technology partnerships and effectiveness of technology collaborations. The perceptions, transfer strategies and objectives, perceived benefits and assessed technology contributions as well as associated costs and risks of both suppliers and acquirers were seen to be the core to these differences. This study hypothesised that the capability embodied in technology to yield future returns makes technology valuation distinct from the process of valuing manufacturing products. The study hence has gone beyond the dimensions of cost calculation and price determination that have been discussed in the existing literature, by taking a broader view of how to achieve and share future added value from transferred technology. The core of technology valuation was argued as the evaluation of the 'quality' of the capability (technology) in generating future value and the effectiveness of the transfer arrangement for best use of such a capability. A dynamic approach comprising future value generation and realisation within the context of specific forms of collaboration was therefore adopted. The research investigations focused on the UK and China machine tool industries, where there are many technology transfer activities and the value issue has already been recognised in practice. Data were gathered from three groups: machine tool manufacturing technology suppliers in the UK and acquirers in China, and machine tool users in China. Data collecting methods included questionnaire surveys and case studies within all the three groups. The study has focused on identifying and examining the major factors affecting value as well as their interactive effects on technology valuation from both the supplier's and acquirer's point of view. The survey results showed the perceptions and the assessments of the owner's value and transfer value from the supplier's and acquirer's point of view respectively. Benefits, costs and risks related to the technology transfer were the major factors affecting the value of technology. The impacts of transfer payment on the value of technology by the sharing of financial benefits, costs and risks between partners were assessed. The close relationship between technology valuation and transfer arrangements was established by which technical requirements and strategic implications were considered. The case studies reflected the research propositions and revealed that benefits, costs and risks in the financial, technical and strategic dimensions interacted in the process of technology valuation within the context of technology collaboration. Further to the assessment of factors affecting value, a technology valuation framework was developed which suggests that technology attributes for the enhancement of contributory factors and their contributions to the realisation of transfer objectives need to be measured and compared with the associated costs and risks. The study concluded that technology valuation is a dynamic process including the generation and sharing of future value and the interactions between financial, technical and strategic achievements.
Resumo:
Formal grammars can used for describing complex repeatable structures such as DNA sequences. In this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant development, and model the morphology of a variety of organisms. We believe that parallel grammars also can be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, but there are many exceptions which makes the promoter recognition a complex problem. We replace the problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L- grammar rules are analyzed and compared with natural promoter sequences.