986 resultados para lyn kinase, oligodendrocytes, brain, myelination
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
Stressful experiences appear to have a strong influence on susceptibility to drug taking behavior. Cross-sensitization between stress and drug-induced locomotor response has been found. Locomotor response to novelty or cocaine (10 mg/kg, i.p.), cyclic AMP-dependent protein kinase (PKA) activity in the nucleus accumbens and basal corticosterone levels were evaluated in male adult rats exposed to acute and chronic predictable or unpredictable stress. Rats exposed to a 14-day predictable stress showed increased locomotor response to novelty and to cocaine, whereas rats exposed to chronic unpredictable stress demonstrated increased cyclic AMP-dependent PKA activity in the nucleus accumbens. Both predictable and unpredictable stress increased basal corticosterone plasma levels. These experiments demonstrated that stress-induced early cocaine sensitization depends on the stress regime and is apparently dissociated from stress-induced changes in cyclic AMP-dependent PKA activity and corticosterone levels. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.
Resumo:
The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.
Resumo:
Rett's Syndrome (RTT) is a severe neurodevelopmental disorder, characterized by cognitive disability that appears in the first months/years of life. Recently, mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been detected in RTT patients characterized by early-onset seizures. CDKL5 is highly expressed in the brain starting from early postnatal stages to adulthood, suggesting the importance of this kinase for proper brain maturation and function. However, the role/s of CDKL5 in brain development and the molecular mechanisms whereby CDKL5 exerts its effects are still largely unknown. In order to characterize the role of CDKL5 on brain development, we created a mice carrying a targeted conditional knockout allele of Cdkl5. A first behavioral characterization shows that Cdkl5 knockout mice recapitulate several features that mimic the clinical features described in CDKL5 patients and are a useful tool to investigate phenotypic and functional aspects of Cdkl5 loss. We used the Cdkl5 knockout mouse model to dissect the role of CDKL5 on hippocampal development and to establish the mechanism/s underlying its actions. We found that Cdkl5 knockout mice showed increased precursor cell proliferation in the hippocampal dentate gyrus. Interestingly, this region was also characterized by an increased rate of apoptotic cell death that caused a reduction in the final neuron number in spite of the proliferation increase. Moreover, loss of Cdkl5 led to decreased dendritic development of new generated granule cells. Finally, we identified the Akt/GSK3-beta signaling as a target of Cdkl5 in the regulation of neuronal precursor proliferation, survival and maturation. Overall our findings highlight a critical role of CDKL5/AKT/GSK3-beta signaling in the control of neuron proliferation, survival and differentiation and suggest that CDKL5-related alterations of these processes during brain development underlie the neurological symptoms of the CDKL5 variant of RTT.
Resumo:
Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.
Resumo:
Die Myelinisierung neuronaler Axone ermöglicht eine schnelle und energieeffiziente Weiterleitung von Informationen im Nervensystem. Durch lokale Synthese von Myelinproteinen kann die Myelinschicht, zeitlich und räumlich reguliert, gebildet werden. Dieser Prozess ist abhängig von verschiedensten axonalen Eigenschaften und muss damit lokal reguliert werden. Die Myelinisierung im zentralen sowie im peripheren Nervensystem hängt unter anderem stark von kleinen regulatorischen RNA Molekülen ab. In Oligodendrozyten wird das Myelin Basische Protein (MBP) von der sncRNA715 translational reguliert, indem diese direkt innerhalb der 3’UTR der Mbp mRNA bindet und damit die Proteinsynthese verhindert. Mbp mRNA wird in hnRNP A2‐enthaltenen RNA Granula in die Zellperipherie transportiert, wo in Antwort auf axonale Signale die membranständige Tyrosin‐ Kinase Fyn aktiviert wird, welche Granula‐Komponenten wie hnRNP A2 und F phosphoryliert wodurch die lokale Translation initiiert wird. Während des Transports wird die mRNA durch die Bindung der sncRNA715 translational reprimiert. SncRNAs bilden zusammen mit Argonaut‐Proteinen den microRNA induced silencing complex (miRISC), welcher die translationale Inhibition oder den Abbau von mRNAs vermittelt. In der vorliegenden Arbeit sollte zum einen die Regulation der sncRNA715‐abhängigen translationalen Repression der Mbp mRNA in oligodendroglialen Zellen genauer untersucht werden und im zweiten Teil wurde die Rolle der sncRNA715 in den myelinbildenden Zellen des peripheren Nervensystems, den Schwann Zellen, analysiert. Es konnte in oligodendroglialen Zellen die mRNA‐Expression der vier, in Säugern bekannten Argonaut‐Proteinen nachgewiesen werden. Außerdem konnten die beiden Proteine Ago1 und Ago2 in vitro sowie in vivo detektiert werden. Ago2 interagiert mit hnRNP A2, Mbp mRNA und sncRNA715, womit es als neue Komponente des Mbp mRNA Transportgranulas identifiziert werden konnte. Des Weiteren colokalisiert Ago2 mit der Fyn‐Kinase und alle vier Argonaut‐Proteine werden Fyn‐abhängig Tyrosin‐phosphoryliert. Die Fyn‐abhängige Phosphorylierung der Granula‐Komponenten in Antwort auf axo‐glialen Kontakt führt zum Zerfall des RNA‐Granulas und zur gesteigerten MBP Proteinsynthese. Dies wird möglicherweise durch Abstoßungskräfte der negativ geladenen phosphorylierten Proteine vermittelt, wodurch diese sich voneinander und von der mRNA entfernen. Durch die Ablösung des miRISCs von der Mbp mRNA wird die Translation möglicherweise reaktiviert und die Myelinisierung kann starten. Mit der Identifizierung von Ago2 als neuer Mbp mRNA Transportgranula‐Komponente konnte ein weiterer Einblick in die Regulation der lokalen Translation von MBP gewährt werden. Das Verständnis dieses Prozesses ist entscheidend für die Entwicklung neuer Therapien von demyelinisierenden Erkrankungen, da neue Faktoren als eventuelle Ziele für pharmakologische Manipulationen identifiziert und möglichweise neue Therapiemöglichkeiten entstehen könnten. Im zweiten Teil der Arbeit wurde die translationale Regulation von Mbp mRNA in Schwann Zellen untersucht. Auch Schwann Zell‐Mbp wird als mRNA translational inaktiviert zur axo‐glialen Kontaktstelle transportiert, wo vermutlich auch lokale Translation in Antwort auf spezifische Signale stattfindet. Allerdings bleiben die genauen Mechanismen der mRNA‐Lokalisation und damit verbundenen translationalen Repression bislang ungeklärt. Es konnte hier gezeigt werden, dass auch in Schwann Zellen die sncRNA715 exprimiert wird und die Translation von Mbp reguliert. Überexpression der synthetischen sncRNA715 führt zu einer signifikanten Reduktion der MBP Proteinmengen in differenzierten primären Schwann Zellen. Damit kann vermutet werden, dass die Regulation der lokalen MBP Proteinsynthese in Schwann Zellen der in Oligodendrozyten ähnelt
Resumo:
Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases.
Resumo:
Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks.
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
BACKGROUND: Eosinophil differentiation, activation, and survival are largely regulated by IL-5. IL-5-mediated transmembrane signal transduction involves both Lyn-mitogen-activated protein kinases and Janus kinase 2-signal transducer and activator of transcription pathways. OBJECTIVE: We sought to determine whether additional signaling molecules/pathways are critically involved in IL-5-mediated eosinophil survival. METHODS: Eosinophil survival and apoptosis were measured in the presence and absence of IL-5 and defined pharmacologic inhibitors in vitro. The specific role of the serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim) 1 was tested by using HIV-transactivator of transcription fusion proteins containing wild-type Pim-1 or a dominant-negative form of Pim-1. The expression of Pim-1 in eosinophils was analyzed by means of immunoblotting and immunofluorescence. RESULTS: Although pharmacologic inhibition of phosphatidylinositol-3 kinase (PI3K) by LY294002, wortmannin, or the selective PI3K p110delta isoform inhibitor IC87114 was successful in each case, only LY294002 blocked increased IL-5-mediated eosinophil survival. This suggested that LY294002 inhibited another kinase that is critically involved in this process in addition to PI3K. Indeed, Pim-1 was rapidly and strongly expressed in eosinophils after IL-5 stimulation in vitro and readily detected in eosinophils under inflammatory conditions in vivo. Moreover, by using specific protein transfer, we identified Pim-1 as a critical element in IL-5-mediated antiapoptotic signaling in eosinophils. CONCLUSIONS: Pim-1, but not PI3K, plays a major role in IL-5-mediated antiapoptotic signaling in eosinophils.
Resumo:
Treatment of central nervous system (CNS) diseases is limited by the blood-brain barrier (BBB), a selective vascular interface restricting passage of most molecules from blood into brain. Specific transport systems have evolved allowing circulating polar molecules to cross the BBB and gain access to the brain parenchyma. However, to date, few ligands exploiting such systems have proven clinically viable in the setting of CNS diseases. We reasoned that combinatorial phage-display screenings in vivo would yield peptides capable of crossing the BBB and allow for the development of ligand-directed targeting strategies of the brain. Here we show the identification of a peptide mediating systemic targeting to the normal brain and to an orthotopic human glioma model. We demonstrate that this peptide functionally mimics iron through an allosteric mechanism and that a non-canonical association of (i) transferrin, (ii) the iron-mimic ligand motif, and (iii) transferrin receptor mediates binding and transport of particles across the BBB. We also show that in orthotopic human glioma xenografts, a combination of transferrin receptor over-expression plus extended vascular permeability and ligand retention result in remarkable brain tumor targeting. Moreover, such tumor targeting attributes enables Herpes simplex virus thymidine kinase-mediated gene therapy of intracranial tumors for molecular genetic imaging and suicide gene delivery with ganciclovir. Finally, we expand our data by analyzing a large panel of primary CNS tumors through comprehensive tissue microarrays. Together, our approach and results provide a translational avenue for the detection and treatment of brain tumors.
Resumo:
Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.
Resumo:
(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^
Resumo:
The expression and function of psoriasin in the brain have been insufficiently characterized. Here, we show the induction of psoriasin expression in the central nervous system (CNS) after bacterial and viral stimulation. We used a pneumococcal meningitis in vivo model that revealed S100A15 expression in astrocytes and meningeal cells. These results were confirmed by a cell-based in vivo assay using primary rat glial and meningeal cell cultures. We investigated psoriasin expression in glial and meningeal cells using polyinosinic-polycytidylic acid, a synthetic analog of double-stranded RNA that mimics viral infection. Furthermore, previous results showed that antimicrobial peptides have not only bactericidal but also immunomodulatory functions. To test this statement, we used recombinant psoriasin as a stimulus. Glial and meningeal cells were treated with recombinant psoriasin at concentrations from 25 to 500 ng/ml. Treated microglia and meningeal cells showed phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (ERK1/2) signal transduction pathway. We demonstrated that this activation of ERK depends on RAGE, the receptor for advanced glycation end products. Furthermore, microglia cells treated with recombinant psoriasin change their phenotype to an enlarged shape. In conclusion, our results indicate an occurrence of psoriasin in the brain. An involvement of psoriasin as an antimicrobial protein that modulates the innate immune system after bacterial or viral stimulation is possible.