826 resultados para longitudinal Poisson data
Resumo:
This study investigates a longitudinal dataset consisting of financial and operational data from 37 listed companies listed on Vietnamese stock market, covering the period 2004-13. By performing three main types of regression analysis - pooled OLS, fixed-effect and random-effect regressions - the investigation finds mixed results on the relationships between operational scales, sources of finance and firms' performance, depending on the choice of analytical model and use of independent/dependent variables. In most situation, fixed-effect models appear to be preferable, providing for reasonably consistent results. Toward the end, the paper offers some further explanation about the obtained insights, which reflect the nature of a business environment of a transition economy and an emerging market.
Resumo:
BACKGROUND: The relationship between work-related stress and alcohol intake is uncertain. In order to add to the thus far inconsistent evidence from relatively small studies, we conducted individual-participant meta-analyses of the association between work-related stress (operationalised as self-reported job strain) and alcohol intake. METHODOLOGY AND PRINCIPAL FINDINGS: We analysed cross-sectional data from 12 European studies (n?=?142 140) and longitudinal data from four studies (n?=?48 646). Job strain and alcohol intake were self-reported. Job strain was analysed as a binary variable (strain vs. no strain). Alcohol intake was harmonised into the following categories: none, moderate (women: 1-14, men: 1-21 drinks/week), intermediate (women: 15-20, men: 22-27 drinks/week) and heavy (women: >20, men: >27 drinks/week). Cross-sectional associations were modelled using logistic regression and the results pooled in random effects meta-analyses. Longitudinal associations were examined using mixed effects logistic and modified Poisson regression. Compared to moderate drinkers, non-drinkers and (random effects odds ratio (OR): 1.10, 95% CI: 1.05, 1.14) and heavy drinkers (OR: 1.12, 95% CI: 1.00, 1.26) had higher odds of job strain. Intermediate drinkers, on the other hand, had lower odds of job strain (OR: 0.92, 95% CI: 0.86, 0.99). We found no clear evidence for longitudinal associations between job strain and alcohol intake. CONCLUSIONS: Our findings suggest that compared to moderate drinkers, non-drinkers and heavy drinkers are more likely and intermediate drinkers less likely to report work-related stress.
Resumo:
This article examines changes in attitudes to gender roles in contemporary Britain by using a first-order Markov process in which cumulative transition probabilities are logistic functions of a set of personal and socioeconomic characteristics of respondents. The data are taken from the British Household Panel Study (BHPS). The attitudinal responses examined take the form of ordinal responses concerning gender roles in 1991 and 2003. The likelihood function is partitioned to make possible the use of existing software for estimating model parameters. For the BHPS data, it was found that, depending on the value of the response in 1991, a variety of factors were important determinants of attitudes to gender roles by 2003.
Resumo:
How does participation in collective activity affect our social identifications and behavior? We investigate this question in a longitudinal questionnaire study conducted at one of the world’s largest collective events – the Magh Mela (a month-long Hindu religious festival in north India). Data gathered from pilgrims and comparable others who did not attend the event show that one month after this mass gathering was over, those who had participated (but not controls) exhibited a heightened social identification as Hindu and increased levels of religious activity (e.g., performing prayer rituals). Additional data gathered from the pilgrim respondents during the festival show that the pilgrims’ perceptions of sharing a common identity with other pilgrims, and of being able to enact their social identity in this event, predicted these outcomes.
Resumo:
The objective of this paper is to introduce a diVerent approach, called the ecological-longitudinal, to carrying out pooled analysis in time series ecological studies. Because it gives a larger number of data points and, hence, increases the statistical power of the analysis, this approach, unlike conventional ones, allows the complementation of aspects such as accommodation of random effect models, of lags, of interaction between pollutants and between pollutants and meteorological variables, that are hardly implemented in conventional approaches. Design—The approach is illustrated by providing quantitative estimates of the short-termeVects of air pollution on mortality in three Spanish cities, Barcelona,Valencia and Vigo, for the period 1992–1994. Because the dependent variable was a count, a Poisson generalised linear model was first specified. Several modelling issues are worth mentioning. Firstly, because the relations between mortality and explanatory variables were nonlinear, cubic splines were used for covariate control, leading to a generalised additive model, GAM. Secondly, the effects of the predictors on the response were allowed to occur with some lag. Thirdly, the residual autocorrelation, because of imperfect control, was controlled for by means of an autoregressive Poisson GAM. Finally, the longitudinal design demanded the consideration of the existence of individual heterogeneity, requiring the consideration of mixed models. Main results—The estimates of the relative risks obtained from the individual analyses varied across cities, particularly those associated with sulphur dioxide. The highest relative risks corresponded to black smoke in Valencia. These estimates were higher than those obtained from the ecological-longitudinal analysis. Relative risks estimated from this latter analysis were practically identical across cities, 1.00638 (95% confidence intervals 1.0002, 1.0011) for a black smoke increase of 10 μg/m3 and 1.00415 (95% CI 1.0001, 1.0007) for a increase of 10 μg/m3 of sulphur dioxide. Because the statistical power is higher than in the individual analysis more interactions were statistically significant,especially those among air pollutants and meteorological variables. Conclusions—Air pollutant levels were related to mortality in the three cities of the study, Barcelona, Valencia and Vigo. These results were consistent with similar studies in other cities, with other multicentric studies and coherent with both, previous individual, for each city, and multicentric studies for all three cities
Resumo:
In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. Next, we discuss the maximum likelihood estimation of the parameters of this cure rate survival model. Finally, we illustrate the usefulness of this model by applying it to a real cutaneous melanoma data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
This paper gives a first step toward a methodology to quantify the influences of regulation on short-run earnings dynamics. It also provides evidence on the patterns of wage adjustment adopted during the recent high inflationary experience in Brazil.The large variety of official wage indexation rules adopted in Brazil during the recent years combined with the availability of monthly surveys on labor markets makes the Brazilian case a good laboratory to test how regulation affects earnings dynamics. In particular, the combination of large sample sizes with the possibility of following the same worker through short periods of time allows to estimate the cross-sectional distribution of longitudinal statistics based on observed earnings (e.g., monthly and annual rates of change).The empirical strategy adopted here is to compare the distributions of longitudinal statistics extracted from actual earnings data with simulations generated from minimum adjustment requirements imposed by the Brazilian Wage Law. The analysis provides statistics on how binding were wage regulation schemes. The visual analysis of the distribution of wage adjustments proves useful to highlight stylized facts that may guide future empirical work.
Resumo:
INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.
Resumo:
The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.