992 resultados para localized large diffusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. Methods We measured NO2 using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. Results Average NO2 concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO2concentrations were 63μg/m3 and 49μg/m3 in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m3 (95% CI: 59μg/m3 – 68μg/m3); local traffic (n = 16): 48μg/m3 (95% CI: 44μg/m3 – 52μg/m3) (p < 0.001). Conclusion The differences in NO2 levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Considering the increasing use of polymyxins to treat infections due to multidrug resistant Gram-negative in many countries, it is important to evaluate different susceptibility testing methods to this class of antibiotic. Methods Susceptibility of 109 carbapenem-resistant P. aeruginosa to polymyxins was tested comparing broth microdilution (reference method), disc diffusion, and Etest using the new interpretative breakpoints of Clinical and Laboratory Standards Institute. Results Twenty-nine percent of isolates belonged to endemic clone and thus, these strains were excluded of analysis. Among 78 strains evaluated, only one isolate was resistant to polymyxin B by the reference method (MIC: 8.0 μg/mL). Very major and major error rates of 1.2% and 11.5% were detected comparing polymyxin B disc diffusion with the broth microdilution (reference method). Agreement within 1 twofold dilution between Etest and the broth microdilution were 33% for polymyxin B and 79.5% for colistin. One major error and 48.7% minor errors were found comparing polymyxin B Etest with broth microdilution and only 6.4% minor errors with colistin. The concordance between Etest and the broth microdilution (reference method) was respectively 100% for colistin and 90% for polymyxin B. Conclusion Resistance to polymyxins seems to be rare among hospital carbapenem-resistant P. aeruginosa isolates over a six-year period. Our results showed, using the new CLSI criteria, that the disc diffusion susceptibility does not report major errors (false-resistant results) for colistin. On the other hand, showed a high frequency of minor errors and 1 very major error for polymyxin B. Etest presented better results for colistin than polymyxin B. Until these results are reproduced with a large number of polymyxins-resistant P. aeruginosa isolates, susceptibility to polymyxins should be confirmed by a reference method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes.  Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100%  density that are evaluated by Barron et al. (1994). Our software is available from the Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion-weighted (DW) magnetic resonance (MR) imaging has a large number of potential clinical applications in the female and male pelvis and can easily be added to any routine MR protocol. In the female pelvis, DW imaging allows improvement of staging in endometrial and cervical cancer, especially in locally advanced disease and in patients in whom contrast medium administration should be avoided. It can also be helpful in characterizing complex adnexal masses and in depicting recurrent tumor after treatment of various gynecologic malignancies. DW imaging shows promising results in monitoring treatment response in patients undergoing radiation therapy of cervical cancer. An increase in apparent diffusion coefficient (ADC) values of responders precedes changes in size and may therefore allow early assessment of treatment success. In the male pelvis, the detection of prostate cancer in the peripheral zone is relatively easier than in the central gland based on the underlying ADC values, whereas overlapping values reported in the central gland still need further research. DW imaging might also be applied in the noninvasive evaluation of bladder cancer to differentiate between superficial and muscle-invasive tumors. Initial promising results have been reported in differentiating benign from malignant pelvic lymph nodes based on the ADC values; however, larger-scale studies will be needed to allow the detection of lymph node metastases in an individual patient. Prerequisites for successfully performing DW imaging of the female and male pelvis are standardization of the DW imaging technique, including the choice of b values, administration of an antiperistaltic drug, and comparison of DW findings with those of morphologic MR imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current treatments for Alzheimer's disease (AD) are only able to slow the progression of mental deterioration, making early and reliable diagnosis an essential part of any promising therapeutic strategy. In the initial stages of AD, the first neuropathological alterations occur in the perforant pathway (PP), a large neuronal fiber tract located at the entrance to the limbic system. However, to date, there is no sensitive diagnostic tool for performing in vivo assessments of this structure. In the present bimodal magnetic resonance imaging (MRI) study, we examined 10 elderly controls, 10 subjects suffering from mild cognitive impairment (MCI), and 10 AD patients in order to evaluate the sensitivity of diffusion tensor imaging (DTI), a new MRI technique, for detecting changes in the PP. Furthermore, the diagnostic explanatory power of DTI data of the PP should be compared to high-resolution MRI volumetry and intervoxel coherences (COH) of the hippocampus and the entorhinal cortex, two limbic regions also involved in the pathophysiology of early AD. DTI revealed a marked decrease in COH values in the PP region of MCI (right side: 26%, left side: 29%, as compared to controls) and AD patients (right side: 37%, left side: 43%, as compared to controls). Reductions in COH values of the PP region were significantly correlated with cognitive impairment. DTI data of the PP zone were the only parameter differing significantly between control subjects and MCI patients, while the volumetric measures and the COH values of the hippocampus and the entorhinal cortex did not. DTI of medial temporal brain regions is a promising non-invasive tool for the in vivo diagnosis of the early/preclinical stages of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate and compare the efficacy of proximal versus distal embolus protection devices (EPD) during carotid artery angioplasty/stenting (CAS) based on diffusion-weighted magnetic resonance imaging (DW-MRI). METHODS: Forty-four patients (31 men; mean age 68 years, range 48-85) underwent protected CAS and had DW-MRI before and after the intervention. The cohort was analyzed according to the type of EPD used: a proximal EPD was deployed in 25 (56.8%) patients (17 men; mean age 66 years, range 48-85) and a distal filter in 19 (14 men; mean age 70 years, range 58-79). Fifteen (60.0%) patients with proximal protection were symptomatic of the target lesion; in the distal protection group, 10 (52.6%) were symptomatic. RESULTS: New lesions were seen on the postinterventional DW-MRI in 28.0% (7/25) of the proximal EPD group versus 32.6% (6/19) of those with a distal filter (p = NS). The majority were clinically silent. The new lesions in the vascular territory of the stented carotid artery in the group as a whole and per patient were fewer in the proximal EPD group (p = NS). No significant differences were noted in the T(2) appearance of the new lesions or the number of new lesions observed away from the vascular territory of the stented artery. CONCLUSION: Proximal embolus protection devices show a nonsignificant trend toward fewer embolic events, which warrants large-scale studies. Furthermore, proximal protection devices can be useful to control and treat acute in-stent thrombosis.