936 resultados para localized exitons
Resumo:
Temperature-dependent photoluminescence measurements have been carried out in zinc-blende InGaN epilayers grown on GaAs substrates by metalorganic vapor-phase epitaxy. An anomalous temperature dependence of the peak position of the luminescence band was observed. Considering thermal activation and the transfer of excitons localized at different potential minima, we employed a model to explain the observed behavior. A good agreement between the theory and the experiment is achieved. At high temperatures, the model can be approximated to the band-tail-state emission model proposed by Eliseev et al. [Appl. Phys. Lett. 71, 569 (1997)]. (C) 2001 American Institute of Physics.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 monolayer (ML) to 3 ML. The temperature dependence of the InAs exciton energy and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML, indicating spontaneous formation of quantum dots (QDs). A model, involving exciton recombination and thermal activation and transfer, is proposed to explain the experimental data. In the PL thermal quenching study, the measured thermal activation energies of different samples demonstrate that the InAs wetting layer may act as a barrier for thermionic emission of carriers in high quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to thermally escape from the localized states. (C) 1998 Academic Press Limited.
Resumo:
We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Pade approximation. The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated. The resonant frequencies and quality factors are calculated for PCs with different defects. The numerical results show that it is possible to modulate the location, width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
Resumo:
Taking advantages of short pulse excitation and time-resolved photoluminescence (PL), we have studied the exciton localization effect in a number of GaAsN alloys and GaAsN/GaAs quantum wells (QWs). In the PL spectra, an extra transition located at the higher energy side of the commonly reported N-related emissions is observed. By measuring PL dependence on temperature and excitation power along with PL dynamics study, the new PL peak has been identified as a transition of the band edge-related recombination in dilute GaAsN alloy and delocalized transition in QWs. Using selective excitation PL we further attribute the localized emission in QWs to the excitons localized at the GaAsN/GaAs interfaces. This interface-related exciton localization could be greatly reduced by a rapid thermal annealing.
Resumo:
Evolution of localized damage zone is a key to catastrophic rupture in heterogeneous materials. In the present article, the evolutions of strain fields of rock specimens are investigated experimentally. The observed evolution of fluctuations and autocorrelations of strain fields under uniaxial compression demonstrates that the localization of deformation always appears ahead of catastrophic rupture. In particular, the localization evolves pronouncedly with increasing deformation in the rock experiments. By means of the definition of the zone with high strain rate and likely damage localization, it is found that the size of the localized zone decreases from the sample size at peak load to an eventual value. Actually, the deformation field beyond peak load is bound to suffer bifurcation, namely an elastic unloading part and a continuing but localized damage part will co-exist in series in a specimen. To describe this continuous bifurcation and localization process observed in experiments, a model on continuum mechanics is developed. The model can explain why the decreasing width of localized zone can lead stable deformation to unstable, but it still has not provided the complete equations governing the evolution of the localized zone.
Resumo:
In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I, an undistorted physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin-heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly.
Resumo:
A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.
Resumo:
Habbal, Shadia Rifai; Morgan, Huw; Johnson, Judd; Arndt, Martina Belz; Daw, Adrian; Jaeggli, Sarah; Kuhn, Jeff; Mickey, Don, LOCALIZED ENHANCEMENTS OF Fe+10 DENSITY IN THE CORONA AS OBSERVED IN Fe xi 789.2 nm DURING THE 2006 MARCH 29 TOTAL SOLAR ECLIPSE, The Astrophysical Journal, Volume 663, Issue 1, pp. 598-609
Resumo:
Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004 , 120 , 9458 and J. Chem. Phys. 2000 , 112 , 4 ). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.
Resumo:
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.