985 resultados para local feature
Resumo:
Breaking synoptic-scale Rossby waves (RWB) at the tropopause level are central to the daily weather evolution in the extratropics and the subtropics. RWB leads to pronounced meridional transport of heat, moisture, momentum, and chemical constituents. RWB events are manifest as elongated and narrow structures in the tropopause-level potential vorticity (PV) field. A feature-based validation approach is used to assess the representation of Northern Hemisphere RWB in present-day climate simulations carried out with the ECHAM5-HAM climate model at three different resolutions (T42L19, T63L31, and T106L31) against the ERA-40 reanalysis data set. An objective identification algorithm extracts RWB events from the isentropic PV field and allows quantifying the frequency of occurrence of RWB. The biases in the frequency of RWB are then compared to biases in the time mean tropopause-level jet wind speeds. The ECHAM5-HAM model captures the location of the RWB frequency maxima in the Northern Hemisphere at all three resolutions. However, at coarse resolution (T42L19) the overall frequency of RWB, i.e. the frequency averaged over all seasons and the entire hemisphere, is underestimated by 28%.The higher-resolution simulations capture the overall frequency of RWB much better, with a minor difference between T63L31 and T106L31 (frequency errors of −3.5 and 6%, respectively). The number of large-size RWB events is significantly underestimated by the T42L19 experiment and well represented in the T106L31 simulation. On the local scale, however, significant differences to ERA-40 are found in the higher-resolution simulations. These differences are regionally confined and vary with the season. The most striking difference between T106L31 and ERA-40 is that ECHAM5-HAM overestimates the frequency of RWB in the subtropical Atlantic in all seasons except for spring. This bias maximum is accompanied by an equatorward extension of the subtropical westerlies.
Resumo:
Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.
Resumo:
Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.
Resumo:
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.
Resumo:
This paper shows that countries characterized by a financial accelerator mechanism may reverse the usual finding of the literature -- flexible exchange rate regimes do a worse job of insulating open economies from external shocks. I obtain this result with a calibrated small open economy model that endogenizes foreign interest rates by linking them to the banking sector's foreign currency leverage. This relationship renders exchange rate policy more important compared to the usual exogeneity assumption. I find empirical support for this prediction using the Local Projections method. Finally, 2nd order approximation to the model finds larger welfare losses under flexible regimes.
Resumo:
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Resumo:
Una de las características de la cartografía y SIG Participativos (SIGP) es incluir en sus métodos a la sociedad civil para aportar contenidos cualitativos a la información de sus territorios. Sin embargo no sólo se trata de datos, sino de los efectos que pueden tener estas prácticas sobre el territorio y su sociedad. El acceso a esa información se ve reducida en contraste con el incremento de información difundida a través de servicios de visualización, geoinformación y cartografía on-line. Todo esto hace que sea necesario el análisis del alcance real de las metodologías participativas en el uso de Información Geográfica (IG) y la comparación desde distintos contextos geográficos. También es importante conocer los beneficios e inconvenientes del acceso a la información para el planeamiento; desde la visibilidad de muchos pueblos desapercibidos en zonas rurales y periféricas, hasta la influencia en programas de gobierno sobre la gestión del territorio pasando por el conocimiento local espacial. El análisis se centró en los niveles de participación de la sociedad civil y sus grados de accesibilidad a la información (acceso y uso), dentro del estudio de los SIGP, Participatory Mapping, además se estudió de los TIG (Tecnologías de Información Geográfica), cartografías on-line (geoweb) y plataformas de geovisualización espacial, como recursos de Neocartografía. En este sentido, se realizó un trabajo de campo de cartografía participativa en Bolivia, se evaluaron distintos proyectos SIGP en países del norte y sur (comparativa de contextos en países en desarrollo) y se analizaron los resultados del cruce de las distintas variables.(validación, accesibilidad, verificación de datos, valor en la planificación e identidad) La tesis considera que ambos factores (niveles de participación y grado de accesibilidad) afectan a la (i) validación, verificación y calidad de los datos, la (ii) valor analítico en la planificación, y al (iii) modelo de identidad de un lugar, y que al ser tratados de forma integral, constituyen el valor añadido que los SIGP pueden aportar para lograr una planificación efectiva. Asimismo se comprueba, que la dimensión participativa en los SIGP varía según el contexto, la centralización de sus actores e intereses sectoriales. La información resultante de las prácticas SIGP tiende a estar restringida por la falta de legislaciones y por la ausencia de formatos estándar, que limitan la difusión e intercambio de la información. Todo esto repercute en la efectividad de una planificación estratégica y en la viabilidad de la implementación de cualquier proyecto sobre el territorio, y en consecuencia sobre los niveles de desarrollo de un país. Se confirma la hipótesis de que todos los elementos citados en los SIGP y mapeo participativo actuarán como herramientas válidas para el fortalecimiento y la eficacia en la planificación sólo si están interconectadas y vinculadas entre sí. Se plantea una propuesta metodológica ante las formas convencionales de planificación (nueva ruta del planeamiento; que incluye el intercambio de recursos y determinación participativa local antes de establecer la implementación), con ello, se logra incorporar los beneficios de las metodologías participativas en el manejo de la IG y los SIG (Sistemas de Información Geográfica) como instrumentos estratégicos para el desarrollo de la identidad local y la optimización en los procesos de planeamiento y estudios del territorio. Por último, se fomenta que en futuras líneas de trabajo los mapas de los SIGP y la cartografía participativa puedan llegar a ser instrumentos visuales representativos que transfieran valores identitarios del territorio y de su sociedad, y de esta manera, ayudar a alcanzar un mayor conocimiento, reconocimiento y valoración de los territorios para sus habitantes y sus planificadores. ABSTRACT A feature of participatory mapping and PGIS is to include the participation of the civil society, to provide qualitative information of their territories. However, focus is not only data, but also the effects that such practices themselves may have on the territory and their society. Access to this information is reduced in contrast to the increase of information disseminated through visualization services, geoinformation, and online cartography. Thus, the analysis of the real scope of participatory methodologies in the use of Geographic Information (GI) is necessary, including the comparison of different geographical contexts. It is also important to know the benefits and disadvantages of access to information needed for planning in different contexts, ranging from unnoticed rural areas and suburbs to influence on government programs on land management through local spatial knowledge. The analysis focused on the participation levels of civil society and the degrees of accessibility of the information (access and use) within the study of Participatory GIS (PGIS). In addition, this work studies GIT (Geographic Information Technologies), online cartographies (Geoweb) and platforms of spatial geovisualization, as resources of Neocartography. A participatory cartographic fieldwork was carried out in Bolivia. Several PGIS projects were evaluated in Northern and Southern countries (comparatively with the context of developing countries), and the results were analyzed for each these different variables. (validation, accessibility, verification,value, identity). The thesis considers that both factors (participation levels and degree of accessibility) affect the (i) validation, verification and quality of the data, (ii) analytical value for planning, and (iii) the identity of a place. The integrated management of all the above cited criteria constitutes an added value that PGISs can contribute to reach an effective planning. Also, it confirms the participatory dimension of PGISs varies according to the context, the centralization of its actors, and to sectorial interests. The resulting information from PGIS practices tends to be restricted by the lack of legislation and by the absence of standard formats, which limits in turn the diffusion and exchange of the information. All of this has repercussions in the effectiveness of a strategic planning and in the viability of the implementation of projects about the territory, and consequentially in the land development levels. The hypothesis is confirmed since all the described elements in PGISs and participatory mapping will act as valid tools in strengthening and improving the effectivity in planning only if they are interconnected and linked amongst themselves. This work, therefore, suggests a methodological proposal when faced with the conventional ways of planning: a new planning route which includes the resources exchange and local participatory determination before any plan is established -. With this, the benefits of participatory methodologies in the management of GI and GIS (Geographic Information Systems) is incorporated as a strategic instrument for development of local identity and optimization in planning processes and territory studies. Finally, the study outlines future work on PGIS maps and Participatory Mapping, such that these could eventually evolve into visual representative instruments that transfer identity values of the territory and its society. In this way, they would contribute to attain a better knowledge, recognition, and appraisement of the territories for their inhabitants and planners.
Resumo:
A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.
Resumo:
The human visual system is able to effortlessly integrate local features to form our rich perception of patterns, despite the fact that visual information is discretely sampled by the retina and cortex. By using a novel perturbation technique, we show that the mechanisms by which features are integrated into coherent percepts are scale-invariant and nonlinear (phase and contrast polarity independent). They appear to operate by assigning position labels or “place tags” to each feature. Specifically, in the first series of experiments, we show that the positional tolerance of these place tags in foveal, and peripheral vision is about half the separation of the features, suggesting that the neural mechanisms that bind features into forms are quite robust to topographical jitter. In the second series of experiment, we asked how many stimulus samples are required for pattern identification by human and ideal observers. In human foveal vision, only about half the features are needed for reliable pattern interpolation. In this regard, human vision is quite efficient (ratio of ideal to real ≈ 0.75). Peripheral vision, on the other hand is rather inefficient, requiring more features, suggesting that the stimulus may be relatively underrepresented at the stage of feature integration.
Resumo:
We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems.
Resumo:
We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.
Resumo:
Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
During the last 15 years corporate governance has become increasingly prominent in the public sector. The Audit Commission's 1993 report on probity in local government recommended the establishment of audit committees. However, progress on this was slow, as demonstrated by a survey of Scottish local authorities by the authors in 1998. Recent major changes in government in Scotland at both a local and national level have prompted councils to improve the accountability, openness and integrity of their operations. One major aspect of this exercise was the formation of scrutiny committees to provide objective scrutiny of the process and audit committees were the most common vehicle for this. This article explores recent developments in Scottish local government and their impact on audit committees. The article also reports the results of a 2005 survey of Scottish local authorities and compares these with the 1998 survey. This indicates a significant growth in the number of audit committees in Scottish councils and although the level of their perceived effectiveness is patchy, they are a more important feature of local government than they were in 1998.