985 resultados para loading rates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficiencies in sardine post-harvest handling methods were seen as major impediments to development of a value-adding sector supplying Australian bait and human consumption markets. Factors affecting sardine deterioration rates in the immediate post-harvest period were investigated and recommendations made for alternative handling procedures to optimise sardine quality. Net to factory sampling showed that post-mortem autolysis was probably caused by digestive enzyme activity contributing to the observed temporal increase in sardine Quality Index. Belly burst was not an issue. Sardine quality could be maintained by reducing tank loading, and rapid temperature reduction using dedicated, on-board value-adding tanks. Fish should be iced between the jetty and the processing factory, and transport bins chilled using an efficient cooling medium such as flow ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics (LEFM) has been widely used in the past for fatigue crack growth studies, but this is acceptable only in situations which are within small scale yielding (SSY). In many practical structural components, conditions of SSY could be violated and one has to look for fracture criteria based on elasto-plastic analysis. Crack closure phenomenon, one of the most striking discoveries based on inelastic deformations during crack growth, has significant effect on fatigue crack growth rate. Numerical simulation of this phenomenon is computationally intensive and involved but has been successfully implemented. Stress intensity factors and strain energy release rates lose their meaning, J-integral (or its incremental) values are applicable only in specific situations, whereas alternate path independent integrals have been proposed in the literature for use with elasto-plastic fracture mechanics (EPFM) based criteria. This paper presents certain salient features of two independent finite element (numerical) studies of relevance to fatigue crack growth, where elasto-plastic analysis becomes significant. These problems can only be handled in the current day computational environment, and would have been only a dream just a few years ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of microstructure and texture during room temperature compression of commercially pure Ti with four different initial orientations were studied under quasi-static and dynamic loading conditions. At a low strain rate (epsilon)over dot = 3 x 10(-4) s(-1) the different initial textures yielded the same end texture, despite different microstructural evolution in terms of twin boundaries. High strain rate deformation at (epsilon)over dot = 1.5 x 10(3) s(-1) was characterized by extensive twinning and evolution of a texture that was similar to that at low strain rate with minor differences. However, there was a significant difference in the strength of the texture for different orientations that was absent for low strain rate deformed samples at high strain rate. A viscoplastic self-consistent model with a secant approach was used to corroborate the experimental results by simulation. (C) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delamination is one of the most commonly occurring defects in laminated composite structures. Under operating fatigue loads on the laminate this delamination could grow and totally delaminate certain number of layers from the base laminate. This will result in loss of both compressive residual strength and buckling margins available. In this paper, geometrically non-linear analysis and evaluation of Strain Energy Release Rates using MVCCI technique is presented. The problems of multiple delamination, effect of temperature exposure and delamination from pin loaded holes are addressed. Numerical results are presented to draw certain inferences of importance to design of high technology composite structures such as aircraft wing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetics and its regulation by extrinsic physical factors govern selectin-ligand interactions that mediate tethering and rolling of circulating cells on the vessel wall under hemodynamic forces. While the force regulation of off-rate for dissociation of selectin-ligand bonds has been extensively studied, much less is known about how transport impacts the on-rate for association of these bonds and their stability. We used atomic force microscopy (AFM) to quantify how the contact duration, loading rate, and approach velocity affected kinetic rates and strength of bonds of P-selectin interacting with P-selectin glycoprotein ligand I (PSGL-1). We found a saturable relationship between the contact time and the rupture force, a biphasic relationship between the adhesion probability and the retraction velocity, a piece-wise linear relationship between the rupture force and the logarithm of the loading rate, and a threshold relationship between the approach velocity and the rupture force. These results provide new insights into how physical factors regulate receptor-ligand interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the effects of enhanced nutrient loading in estuarine waters on phytoplankton growth and microzooplankton grazing, we conducted monthly dilution experiments at 2 stations in Hong Kong coastal waters with contrasting trophic conditions. The western estuarine station (WE) near the Pearl River estuary is strongly influenced by freshwater discharge, while the eastern oceanic station (EO) is mostly affected by the South China Sea. Growth rates of phytoplankton were often limited by nutrients at EO, while nutrient limitation of phytoplankton growth seldom Occurred at WE due to the high level of nutrients delivered by the Pearl River, especially in the summer rainy season. Higher chlorophyll a, microzooplankton biomass, phytoplankton growth and microzooplankton grazing rates were found at WE than at EO. However, the increase in chlorophyll greatly exceeded the increase in phytoplankton growth rate, reflecting different response relationships to nutrient availability. Strong seasonality was observed at both stations, with temperature being an important factor affecting both phytoplankton growth and microzooplankton grazing rates. Picophytoplankton, especially Synechococcus, also exhibited great seasonality at EO, with summer abundances being 2 or 3 orders of magnitude higher than those during winter, Our results confirm that in eutrophic coastal environments, microzooplankton grazing is a dominant loss pathway for phytoplankton, accounting for the utilization of >50%, of primary production on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation in wear paths is known to greatly affect wear rates in vitro, with multidirectional paths producing much greater wear than unidirectional paths. This study investigated the relationship between multidirectional motion at the hip joint, as measured by aspect ratio, sliding distance, and wear rate for 164 hip replacements. Kinematic input from three-dimensional gait analysis was used to determine the wear paths. Activity cycles were determined for a subgroup of 100 patients using a pedometer study, and the relationship between annual sliding distance and wear rate was analyzed. Poor correlations were found between both aspect ratio and sliding distance and wear rate for the larger group and between annual sliding distance and wear rate for the subgroup. However, patients who experienced a wear rate <0.08 mm/year showed a strong positive correlation between the combination of sliding distance, activity levels, and aspect ratio and wear rate (adjusted r2?=?55.4%). This group may represent those patients who experience conditions that most closely match those that prevail in simulator and laboratory tests. Although the shape of wear paths, their sliding distance, and the number of articulation cycles at the hip joint affect wear rates in simulator studies, this relationship was not seen in this clinical study. Other factors such as lubrication, loading conditions and roughness of the femoral head may influence the wear rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel is one of the most commonly found problems affecting the durability of reinforced concrete structures in both marine environment and where de-icing salt is used in winter. As the significance of micro-cracks on chloride induced corrosion is not well documented, 24 reinforced concrete beams (4 different mixes - one containing Portland cement and another containing 35% ground granulated blastfurnace slag at 0.45 and 0.65 water-binder ratios) were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce 0.1 mm wide cracks on the tension surface of beam - F0.1) in this work. The beams were then subjected to weekly cycles of wetting with 10% NaCl solution for 1 day followed by 6 days of drying at 20 (±1) °C up to an exposure period of 60 weeks. The progress of corrosion of steel was monitored using half-cell potential apparatus and linear polarisation resistance (LPR) test. These results have shown that macro-cracks (at load F0.1) and micro-cracks (at 50% of F0.1) greatly accelerated both the initiation and propagation stages of the corrosion of steel in the concrete beams. Lager crack widths for the F0.1 load cases caused higher corrosion rates initially, but after about 38 weeks of exposure, there was a decrease in the rate of corrosion. However, such trends could not be found in 50% F 0.1 group of beams. The extent of chloride ingress also was influenced by the load level. These findings suggest that the effect of micro-cracking at lower loads are very important for deciding the service life of reinforced concrete structures in chloride exposure environments. © 2014 4th International Conference on the Durability of Concrete Structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment with implants aims to obtain a direct interface between bone and implant. The implant is kept load-free during 4 to 6 months in the 2-stage procedure, which is considered a requisite for osseointegration. However, this period is based on empirical principles and uncomfortable for patient. So, the immediate loading protocol was Suggested to submit implants to occlusal function after placement. This protocol has been applied for several conditions of edentulism. The aim of this study was to evaluate the treatment alternatives for immediate loading of complete and partial edentulous patients. In general, the studies have demonstrated high previsibility for rehabilitation of complete edentulous arches with full-arch, implant-supported prosthesis. The rehabilitation with immediate loading for maxillary overdenture is questionable because there is no longitudinal study in literature. The studies with partial edentulous arches have demonstrated high success rates for implants placed in the mandibular and maxillary anterior region. Additional care is recommended for posterior region mainly in the maxillary arch, and further studies are suggested to corroborate this treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The weathering rate of rocks and chemical dynamics of the Corumbatai River basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. This basin has serious environmental problems in terms of quality of surface and rainwater, which affect the determination of weathering rate. The Corumbatai River, downstream from Rio Claro City, receives several elements/compounds through anthropogenic activities, with only K, SO42- and alkalinity yielding positive flux values. The negative flux of some anions/cations can be attributed to atmospheric loading mainly related to anthropogenic inputs, providing K a value of 16.7 ton/km(-2)a(-1) for the material removed by weathering in the Corumbatai River basin. This is equivalent to 26 x 10(6) kg of rock being removed each year by the Corumbatai River. The instantaneous flux was found to be a function of discharge, with the majority of dry residue (dissolved load) being transported during the summer (wet) months. The removed material in Corumbatai River basin derives mainly from two sub-basins (Cabegas River and Passa Cinco River), where the sandstones weather more easily than siltstones and claystones in the basin. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AimTo evaluate prospectively the clinical and radiographic outcomes after 2 years of loading of 6 mm long moderately rough implants supporting single crowns in the posterior regions.Material and methodsForty SLActive Straumann (R) short (6 mm) implants were placed in 35 consecutively treated patients. Nineteen implants, 4.1 mm in diameter, and 21 implants, 4.8 mm in diameter, were installed. Implants were loaded after 6 weeks of healing. Implant survival rate, marginal bone loss and resonance frequency analysis (RFA) were evaluated at different intervals. The clinical crown/implant ratio was also calculated.ResultsTwo out of 40 implants were lost before loading. Hence, the survival rate before loading was 95%. No further technical or biological complications were encountered during the 2-year follow-up. The mean marginal bone loss before loading was 0.34 +/- 0.38 mm. After loading, the mean marginal bone loss was 0.23 +/- 0.33 and 0.21 +/- 0.39 mm at the 1- and 2-year follow-ups. The RFA values increased between insertion (70.2 +/- 9) and the 6-week evaluation (74.8 +/- 6.1). The clinical crown/implant ratio increased with time from 1.5 at the delivery of the prosthesis to 1.8 after 2 years of loading.ConclusionShort implants (6 mm) with a moderately rough surface loaded early (after 6 weeks) during healing yielded high implant survival rates and moderate loss of bone after 2 years of loading. Longer observation periods are needed to draw more definite conclusions on the reliability of short implants supporting single crowns.To cite this article:Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study.Clin. Oral Impl. Res. 21, 2010; 937-943.doi: 10.1111/j.1600-0501.2010.01942.x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this investigation was to accomplish an overview about the principles of the indication and of the success parameters involving immediate and delayed loading dental implants procedures. Studies about the philosophies (immediate and delayed loading dental implants) and their clinical indications will be discussed in order to overview the rules for the clinical success in both techniques. In addition, studies regarding the criteria for immediate loading implants as primary stabilization, surface treatments and bone density and amount will be also analyzed. More important than the philosophy selection, is how and when to use it according to biomechanical rules and principles. Among the vast limitations pointed by the literature regarding procedures of immediate and delayed loading are evidenced the parafunctional habits, primary stabilization, bone quality, surface treatments and the number of dental implants. The anterior region of the jaw seems to be associated with a major percentage of satisfactory results, regardless of rehabilitation procedures. Although several studies have demonstrated high success rates for the immediate loading dental implants, several aspects remain without an explicit definition and further studies are needed to elucidate some reservations.