138 resultados para lipolysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)-/- mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5-/- mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5-/- mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action. © 2014 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerging evidence indicates that skeletal muscle lipid droplets are an important control point for intracellular lipid homeostasis and that regulating fatty acid fluxes from lipid droplets might influence mitochondrial capacity. We used pharmacological blockers of the major triglyceride lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase, to show that a large proportion of the fatty acids that are transported into myotubes are trafficked through the intramyocellular triglyceride pool. We next tested whether increasing lipolysis from intramyocellular lipid droplets could activate transcriptional responses to enhance mitochondrial and fatty acid oxidative capacity. ATGL was overexpressed by adenoviral and adenoassociated viral infection in C2C12 myotubes and the tibialis anterior muscle of C57Bl/6 mice, respectively. ATGL overexpression in C2C12 myotubes increased lipolysis, which was associated with increased peroxisome proliferator-activated receptor (PPAR)-∂ activity, transcriptional upregulation of some PPAR∂ target genes, and enhanced mitochondrial capacity. The transcriptional responses were specific to ATGL actions and not a generalized increase in fatty acid flux in the myotubes. Marked ATGL overexpression (20-fold) induced modest molecular changes in the skeletal muscle of mice, but these effects were not sufficient to alter fatty acid oxidation. Together, these data demonstrate the importance of lipid droplets for myocellular fatty acid trafficking and the capacity to modulate mitochondrial capacity by enhancing lipid droplet lipolysis in vitro; however, this adaptive program is of minor importance when superimposing the normal metabolic stresses encountered in free-moving animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Sprint exercise and hypoxic stimulus during exercise are potent factors affecting hormonal and metabolic responses. However, the effects of different hypoxic levels on hormonal and metabolic responses during sprint exercise are not known. Here, we examined the effect of different hypoxic conditions on hormonal and metabolic responses during sprint exercise. DESIGN: Seven male subjects participated in three experimental trials: 1) sprint exercise under normoxia (NSE); 2) sprint exercise under moderate normobaric hypoxia (16.4% oxygen) (HSE 16.4); and 3) sprint exercise under severe normobaric hypoxia (13.6% oxygen) (HSE 13.6). The sprint exercise consisted of four 30s all-out cycling bouts with 4-min rest between bouts. Glucose, free fatty acids (FFA), blood lactate, growth hormone (GH), epinephrine (E), norepinephrine (NE), and insulin concentrations in the HSE trials were measured before exposure to hypoxia (pre 1), 15 min after exposure to hypoxia (pre 2), and at 0, 15, 30, 60, 120, and 180 min after the exercise performed in hypoxia. The blood samples in the NSE trial were obtained in normoxia at the same time points as the HSE trials. RESULTS: Circulating levels of glucose, FFA, lactate, GH, E, NE, and insulin significantly increased after all three exercise trials (P < 0.05). The area under the curve (AUC) for GH was significantly higher in the HSE 13.6 trial than in the NSE and HSE 16.4 trials (P < 0.05). A maximal increase in FFA concentration was observed at 180 min after exercise and was not different between trials. CONCLUSION: These findings suggest that severe hypoxia may be an important factor for the enhancement of GH response to all-out sprint exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: This study investigated the effects of soy product fermented by Enterococcus faecium and Lactobacillus jugurti supplemented with isoflavones on adipose tissue, blood lipid, and glucose levels on juvenile rats. Methods: Rats were fed a cholesterol-enriched diet for 3 wk as a preliminary treatment to create hypercholesterolemia. They were then fed a chow diet (HC), a chow diet plus fermented soy product supplemented with isoflavones (HCFI), a chow diet plus placebo (HCP), or a chow diet plus placebo supplemented with isoflavones (HCPI), respectively, for an additional 3 wk. Results: The beneficial effects of fermented soy product supplemented with isoflavones on epididymal (EPI) and retroperitoneal (RET) fat pads was likely due to isoflavones because adipocyte circumference (micrometers) in the HC group was significantly larger (EPI: 105.66 ± 13.36; RET: 134.95 ± 25.40) than that in the HCFI group (EPI: 93.17 ± 12.80; RET: 108.62 ± 15.50) and HCPI group (EPI: 93.06 ± 15.10; RET: 112.34 ± 18.21). The probiotic micro-organism accentuated the antilipogenic effect of isoflavones on RET (HCFI: 108.62 ± 15.50 micrometers versus HCPI: 112.34 ± 18.21 micrometers). Moreover, the fermented product increased glucose concentration similar to that in the chow group but did not change blood lipids. Conclusion: This product may offer new approaches to obesity prevention. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this minireview we describe the involvement of the atrial natriuretic peptide (ANP) in cardiovascular pathophysiology and exercise. The ANP has a broad homeostatic role and exerts complex effects on the cardio-circulatory hemodynamics, it is produced by the left atrium and has a key role in regulating sodium and water balance in mammals and humans. The dominant stimulus for its release is atrial wall tension, commonly caused by exercise. The ANP is involved in the process of lipolysis through a cGMP signaling pathway and, as a consequence, reducing blood pressure by decreasing the sensitivity of vascular smooth muscle to the action of vasoconstrictors and regulate fluid balance. The increase of this hormone is associated with better survival in patients with chronic heart failure (CHF). This minireview provides new evidence based on recent studies related to the beneficial effects of exercise in patients with cardiovascular disease, focusing on the ANP. © 2012 de Almeida et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Obesity, oxidative stress and inflammation, by triggering insulin resistance, may contribute to the accumulation of hepatic fat, and this accumulation by lipotoxicity can lead the organ to fail. Because obesity is growing at an alarming rate and, worryingly, in a precocious way, the present study aimed to investigate the effects of moderate physical training performed from childhood to adulthood on liver fat metabolism in rats. Methods. Twenty rats that were 28days old were divided into two groups: control (C) and trained (T). The C Group was kept in cages without exercise, and the T group was submitted to swimming exercise for 1hour/day, 5days/week from 28 to 90days of age (8weeks) at 80% of the anaerobic threshold determined by the lactate minimum test. At the end of the experiment, the body weight gain, insulin sensitivity (glucose disappearance rate during the insulin tolerance test), concentrations of free fatty acids (FFA) and triglycerides (TG) and hepatic lipogenic rate were analyzed. For the statistical analysis, the Student t-test was used with the level of significance preset at 5%. Results: The T group showed lower body weight gain, FFA concentrations, fat accumulation, hepatic lipogenic rate and insulin resistance. Conclusion: The regular practice of moderate physical exercise from childhood can contribute to the reduction of obesity and insulin resistance and help prevent the development of accumulation of hepatic fat in adulthood. © 2013de Moura et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cooling, without using adequate hygienic practices in primary milk production, allows for the growth of psychrotrophic microorganisms that produce the thermoresistant lipases that give milk a rancid flavor. This study aimed to verify how the variation in temperature influences the lipolytic metabolism of the psychrotrophic organisms. Samples of raw milk were collected and submitted to laboratorial analysis as follows: psychrotrophic bacteria count, lipolytic bacteria count, and free fatty acids dosage. Each sample was divided into 3 aliquots and then incubated at 4, 8, and 12 °C, respectively. For each temperature, analyses were repeated after 12, 24, and 48 h of storage. Despite the psychrotrophs growth increase, according to temperature rise, the lipolytic metabolism was not consistent and presented the lower index at 8 °C, suggesting an intensification of the proteolytic compensatory activity at this temperature. © 2013 Institute of Food Technologists®.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)