914 resultados para linear dynamic output feedback control
Resumo:
In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Resumo:
In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
El desarrollo da las nuevas tecnologías permite a los ingenieros llevar al límite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la información a una alta velocidad, con un alto consumo de energía, o esperar en modo de baja potencia con el mínimo consumo posible. Esta gran variación en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Módulo de Regulador de Tensión (Voltage Regulated Module, VRM) que alimenta al IC. Además, las características adicionales obligatorias, tales como adaptación del nivel de tensión (Adaptive Voltage Positioning, AVP) y escalado dinámico de la tensión (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseño de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energía y el rendimiento durante la operación de DVS. Por tanto, las actuales tendencias de investigación se centran en mejorar la respuesta dinámica del VRM, mientras se reduce el tamaño del condensador de salida. La reducción del condensador de salida lleva a menor coste y una prolongación de la vida del sistema ya que se podría evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar más rápido y con menor estrés de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensión de salida es menor. El comportamiento dinámico del sistema con un control lineal (Control Modo Tensión, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,…) está limitado por la frecuencia de conmutación del convertidor y por el tamaño del filtro de salida. La reducción del condensador de salida se puede lograr incrementando la frecuencia de conmutación, así como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo régimen permanente en un tiempo mínimo, así como el filtro de salida, más específicamente la pendiente de la corriente de la bobina, define la respuesta de la tensión de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega más rápido al nuevo régimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el tránsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de pérdidas de conmutación y las corrientes RMS. Para conseguir tanto la reducción del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinámicas, un convertidor multifase es adoptado como estándar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitación impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificación topológica (Topologic modifications) de la etapa básica de potencia para incrementar la pendiente de la corriente de bobina y así reducir la duración de tránsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escalón de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviación de la tensión de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energía (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duración del transitorio y la desviación de la tensión de salida. De esta manera, durante el régimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseñado para trabajar con una frecuencia de conmutación moderada para conseguir requisitos estáticos. Por otro lado, el comportamiento dinámico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de pérdidas durante el transitorio. Por otro lado, la implementación del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutación, aunque produce menores pérdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicación, la implementación y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solución ofrece más ventajas que las otras, pero también unas desventajas. En general, un sistema con AEP ideal debería tener las siguientes propiedades: 1. El impacto del AEP a las pérdidas del sistema debería ser mínimo. A lo largo de la operación, el AEP genera pérdidas adicionales, con lo cual, en el caso ideal, el AEP debería trabajar por un pequeño intervalo de tiempo, solo durante los tránsitos; la otra opción es tener el AEP constantemente activo pero, por la compensación del rizado de la corriente de bobina, se generan pérdidas innecesarias. 2. El AEP debería ser activado inmediatamente para minimizar la desviación de la tensión de salida. Para conseguir una activación casi instantánea, el sistema puede ser informado por la carga antes del escalón o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que actúa a la perturbación de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensión de salida, logrando una menor desviación de la tensión de salida. 3. El AEP debería ser desactivado una vez que el nuevo régimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayoría de las soluciones de SoA estiman la duración del transitorio, que puede provocar un transitorio adicional si la estimación no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo régimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mínimo un subsistema, o bien el convertidor principal o el AEP, debería operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parásitos. Además, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mínimo tiempo, así reducen la duración del transitorio y tienen un impacto menor a las pérdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parásitos de los componentes. 5. El AEP debería inyectar la corriente a la salida en una manera controlada, así se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensión de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseñado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensión de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbación de tensión de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histéresis, la corriente auxiliar tiene el control con prealimentación (feed-forward) de tensión de entrada y la corriente es definida y limitada. Por otro lado, si la solución utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensión de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma más/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrés térmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementación con solo una fase. Esta tesis propone un nuevo método de control del flujo de energía por el AEP y el convertidor principal. El concepto propuesto se basa en la inyección controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador físico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor síncrono multifase con control modo de corriente CMC (incluyendo e implementación con una fase) y puede operar con la tensión de salida constante o con AVP. Además, el concepto es extendido a un convertidor de una fase con control modo de tensión VMC. Durante la operación, el control de tensión de salida de convertidor principal y control de corriente del subsistema OICC están siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parásitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Según el método de control propuesto, el sistema se puede encontrar en dos estados: durante el régimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC está activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autónoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo régimen permanente es detectado, observando las variables del estado. La validación del concepto OICC es hecha aplicándolo a un convertidor tipo reductor síncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140μF, mientras el factor de multiplicación n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor síncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reducción de la desviación de tensión de salida con factor 12, tanto con funcionamiento básico como con funcionamiento AVP. Además, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida físico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinámico. Más aun, se ha cuantificado el impacto en las pérdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las pérdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo último, el condensador de salida de sistema con OICC es mucho más pequeño que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energía se incrementa. En resumen, las contribuciones principales de la tesis son: • El concepto propuesto de Output Impedance Correction Circuit (OICC), • El control a nivel de sistema basado en el método usado para cambiar los estados de operación, • La implementación del subsistema OICC en lazo cerrado conjunto con la implementación del convertidor principal, • La cuantificación de las perdidas dinámicas bajo la carga pulsante y bajo la operación DVS, y • La robustez del sistema bajo la variación del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,…) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140μF output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: • The proposed Output Impedance Correction Circuit (OICC) concept, • The system level control based on the used approach to change the states of operation, • The OICC subsystem closed-loop implementation, together with the main converter implementation, • The dynamic losses under the pulsating load and the DVS operation quantification, and • The system robustness on the capacitor impedance variation and consecutive load-steps.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.
Resumo:
In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
Resumo:
This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.
Resumo:
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Implicit dynamic-algebraic equations, known in control theory as descriptor systems, arise naturally in many applications. Such systems may not be regular (often referred to as singular). In that case the equations may not have unique solutions for consistent initial conditions and arbitrary inputs and the system may not be controllable or observable. Many control systems can be regularized by proportional and/or derivative feedback.We present an overview of mathematical theory and numerical techniques for regularizing descriptor systems using feedback controls. The aim is to provide stable numerical techniques for analyzing and constructing regular control and state estimation systems and for ensuring that these systems are robust. State and output feedback designs for regularizing linear time-invariant systems are described, including methods for disturbance decoupling and mixed output problems. Extensions of these techniques to time-varying linear and nonlinear systems are discussed in the final section.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
Feasibility of nonlinear and adaptive control methodologies in multivariable linear time-invariant systems with state-space realization (A, B, C) is apparently limited by the standard strictly positive realness conditions that imply that the product CB must be positive definite symmetric. This paper expands the applicability of the strictly positive realness conditions used for the proofs of stability of adaptive control or control with uncertainty by showing that the not necessarily symmetric CB is only required to have a diagonal Jordan form and positive eigenvalues. The paper also shows that under the new condition any minimum-phase systems can be made strictly positive real via constant output feedback. The paper illustrates the usefulness of these extended properties with an adaptive control example. (C) 2006 Elsevier Ltd. All rights reserved.