970 resultados para ligand binding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In April 2007, the Biochemical Society held a meeting to compare and contrast ligand binding and activation of Family A and B GPCRs (G-protein-coupled receptors). Being the largest class, Family A GPCRs usually receive the most attention, although a previous Biochemical Society meeting has focused on Family B GPCRs. The aim of the present meeting was to bring researchers of both families together in order to identify commonalities between the two. The present article introduces the proceedings of the meeting, briefly commenting on the focus of each of the following articles. ©The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved. ©The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ∼2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant expression of the Aryl Hydrocarbon Receptor (AhR) yields small amounts of ligand- binding competent AhR. Therefore, Spodoptera frugiperda (Sf9) cells and baculovirus have been evaluated for high level and functional expression of AhR. Rat and human AhR were expressed as soluble protein in significant amounts. Expression of ligand-binding competent AhR was sensitive to the protein concentration of Sf9 extract, and co-expression of the chaperone p23 failed to affect the yield of functional ligand-binding AhR. The expression system yielded high levels of functional protein, with the ligand-binding capacity (Bmax) typically 20- fold higher than that obtained with rat liver cytosol. Quantitative estimates of the ligand-binding affinity of human and rat AhR were obtained; the Kd for recombinant rat AhR was indistinguishable from that of native rat AhR, thereby validating the expression system as a faithful model for native AhR. The human AhR bound TCDD with significantly lower affinity than the rat AhR. These findings demonstrate high-level expression of ligand-binding competent AhR, and sufficient AhR for quantitative analysis of ligand-binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM- 1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70−Oγ and Lys73−Nζ, Lys73−Nζ and Ser130−Oγ, and Ser70−Oγ−Ser130−Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mannan-binding lectin (MBL) is an important protein of the innate immune system and protects the body against infection through opsonization and activation of the complement system on surfaces with an appropriate presentation of carbohydrate ligands. The quaternary structure of human MBL is built from oligomerization of structural units into polydisperse complexes typically with three to eight structural units, each containing three lectin domains. Insight into the connection between the structure and ligand-binding properties of these oligomers has been lacking. In this article, we present an analysis of the binding to neoglycoprotein-coated surfaces by size-fractionated human MBL oligomers studied with small-angle x-ray scattering and surface plasmon resonance spectroscopy. The MBL oligomers bound to these surfaces mainly in two modes, with dissociation constants in the micro to nanomolar order. The binding kinetics were markedly influenced by both the density of ligands and the number of ligand-binding domains in the oligomers. These findings demonstrated that the MBL-binding kinetics are critically dependent on structural characteristics on the nanometer scale, both with regard to the dimensions of the oligomer, as well as the ligand presentation on surfaces. Therefore, our work suggested that the surface binding of MBL involves recognition of patterns with dimensions on the order of 10-20 nm. The recent understanding that the surfaces of many microbes are organized with structural features on the nanometer scale suggests that these properties of MBL ligand recognition potentially constitute an important part of the pattern-recognition ability of these polyvalent oligomers. The Journal of Immunology, 2012, 188: 1292-1306.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The SH3 domains of src and other nonreceptor tyrosine kinases have been shown to associate with the motif PXXP, where P and X stand for proline and an unspecified amino acid, but a motif that binds to the SH3 domain of myosin has thus far not been characterized. We previously showed that the SH3 domain of Acanthamoeba myosin-IC interacts with the protein Acan125. We now report that the Acan125 protein sequence contains two tandem consensus PXXP motifs near the C terminus. To test for binding, we expressed a polypeptide, AD3p, which includes 344 residues of native C-terminal sequence and a mutant polypeptide, AD3 Delta 977-994p, which lacks the sequence RPKPVPPPRGAKPAPPPR containing both PXXP motifs. The SH3 domain of Acanthamoeba myosin-IC bound AD3p and not AD3 Delta 977-994p, showing that the PXXP motifs are required for SH3 binding. The sequence of Acan125 is related overall to a protein of unknown function coded by Caenorhabditis elegans gene K07G5.1. The K07G5.1 gene product contains a proline-rich segment similar to the SH3 binding motif found in Acan125. The aligned sequences show considerable conservation of leucines and other hydrophobic residues, including the spacing of these residues, which matches a motif for leucine-rich repeats (LRRs). LRR domains have been demonstrated to be sites for ligand binding. Having an LRR domain and an SH3-binding domain, Acan125 and the C. elegans homologue define a novel family of bifunctional binding proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the kallikrein-kinin and renin-angiotensin systems the main receptors, B-1 and B-2 (kinin receptors) and AT(1) and AT(2) (angiotensin receptors) respectively, are seven-transmembrane domain G-protein-coupled receptors. Considering that the B, agonists Des-Arg(9)-BK (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe), Lys-desArg(9)-BK or Des-Arg(10)-KD (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe) and the AT, agonist (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) have the same two residues at the C-terminal region (i.e. Pro-Phe), we hypothesized that TM V and TM VI of the B-1 receptor could play an essential role in agonist binding and activity, being these regions receptor sites for binding the C-terminal sequences of Des-Arg-kinins similarly to that observed to AT, receptor. To investigate this hypothesis, we replaced Arg(212) for Ala at the top of the TM V and the sequence 274-282 (CPYHFFAFL) in TM VI of the rat kinin B, receptor by the 32 receptor homologous sequence, 289-297 (FPFQISTFL) and subsequently analyzed the consequences of these mutations by competition binding and functional assays. Despite correct expression, observed at the mRNA and protein level by RT-PCR and confocal microscopy, respectively, no agonist binding and function was verified for the mutated receptors. Therefore, our results suggest an important role for Arg(212) in the TM V and a region of TM VI of rat B, receptor in the interaction with the C-terminal residues of Des-Arg-kinins, similar to that observed with AngII. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.