983 resultados para life resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

While physical activity, energy restriction and weight loss are the cornerstone of type 2 diabetes management, less emphasis is placed on optimizing skeletal muscle mass. As muscle is the largest mass of insulin-sensitive tissue and the predominant reservoir for glucose disposal, there is a need to develop safe and effective evidence-based, lifestyle management strategies that optimize muscle mass as well as improve glycaemic control and cardiometabolic risk factors in people with this disease, particularly older adults who experience accelerated muscle loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental context Soils contaminated with metals can pose both environmental and human health risks. This study showed that a common crop vegetable grown in the presence of cadmium and zinc readily accumulated these metals, and thus could be a source of toxicity when eaten. The work highlights potential health risks from consuming crops grown on contaminated soils. Abstract Ingestion of plants grown in heavy metal contaminated soils can cause toxicity because of metal accumulation. We compared Cd and Zn levels in Brassica rapa, a widely grown crop vegetable, with that of the hyperaccumulator Solanum nigrum L. Solanum nigrum contained 4 times more Zn and 12 times more Cd than B. rapa, relative to dry mass. In S. nigrum Cd and Zn preferentially accumulated in the roots whereas in B. rapa Cd and Zn were concentrated more in the shoots than in the roots. The different distribution of Cd and Zn in B. rapa and S. nigrum suggests the presence of distinct metal uptake mechanisms. We correlated plant metal content with the expression of a conserved putative natural resistance-associated macrophage protein (NRAMP) metal transporter in both plants. Treatment of both plants with either Cd or Zn increased expression of the NRAMP, with expression levels being higher in the roots than in the shoots. These findings provide insights into the molecular mechanisms of heavy metal processing by S. nigrum L. and the crop vegetable B. rapa that could assist in application of these plants for phytoremediation. These investigations also highlight potential health risks associated with the consumption of crops grown on contaminated soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Climate change is expected to increase the frequency and intensity of extreme climatic events, such as severe droughts and intense rainfall periods. We explored how the avifauna of a highly modified region responded to a 13-year drought (the 'Big Dry'), followed by a two-year period of substantially higher than average rainfall (the 'Big Wet'). Location: Temperate woodlands in north central Victoria, Australia. Methods: We used two spatially extensive, long-term survey programmes, each of which was repeated three times: early and late in the Big Dry, and in the Big Wet. We compared species-specific changes in reporting rates between periods in both programmes to explore the resistance (the ability to persist during drought) and resilience (extent of recovery post-drought) of species to climate extremes. Results: There was a substantial decline in the reporting rates of 42-62% (depending on programme) of species between surveys conducted early and late in the Big Dry. In the Big Wet, there was some recovery, with 21-29% of species increasing substantially. However, more than half of species did not recover and 14-27% of species continued to decline in reporting rate compared with early on in the Big Dry. Species' responses were not strongly related to ecological traits. Species resistance to the drought was inversely related to resilience in the Big Wet for 20-35% of the species, while 76-78% of species with low resistance showed an overall decline across the study period. Conclusions: As declines occurred largely irrespective of ecological traits, this suggests a widespread mechanism is responsible. Species that declined the most during the Big Dry did not necessarily show the greatest recoveries. In already much modified regions, climate extremes such as extended drought will induce on-going changes in the biota. © 2014 John Wiley & Sons Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The striated muscle activator of Rho signaling (STARS) protein and members of its downstream signaling pathway, including myocardin-related transcription factor-A (MRTF-A) and SRF, are increased in response to prolonged resistance exercise training but also following a single bout of endurance cycling. The aim of the present study was to measure and compare the regulation of STARS, MRTF-A and SRF mRNA and protein following 10 weeks of endurance training (ET) versus resistance training (RT), as well as before and following a single bout of endurance (EE) versus resistance exercise (RE). Following prolonged training, STARS, MRTF-A and SRF mRNA levels were all increased by similar magnitude, irrespective of training type. In the training-habituated state, STARS mRNA increased following a single-bout RE when measured 2.5 and 5 h post-exercise and had returned to resting level by 22 h following exercise. MRTF-A and SRF mRNA levels were decreased by 2.5, 5, and 22 h following a single bout of RE and EE exercise when compared to their respective basal levels, with no significant difference seen between the groups at any of the time points. No changes in protein levels were observed following the two modes of exercise training or a single bout of exercise. This study demonstrates that the stress signals elicited by ET and RT result in a comparable regulation of members of the STARS pathway. In contrast, a single bout of EE and RE, performed in the trained state, elicit different responses. These observations suggest that in the trained state, the acute regulation of the STARS pathway following EE or RE may be responsible for exercise-specific muscle adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The phosphorylation of p70S6 Kinase (p70S6K) is an important step in the initiation of protein translation. p70S6K phosphorylation is enhanced with graded intakes of whey protein after resistance exercise. Soy protein ingestion results in lower muscle protein synthesis after exercise compared with whey; however, the underlying mechanisms responsible for this difference have not been reported. FINDINGS: 13 older men (60-75) completed an acute bout of lower body resistance exercise and ingested 30 g of soy protein or carbohydrate. Muscle biopsies were obtained in the rested and fasted state and 2 and 4 hours post exercise. Phosphorylation status of p70S6K was measured with western blot. Results were compared with previously reported data from the ingestion of 30 g of whey protein or placebo. p70S6K phosphorylation was increased 2, but not 4 hours post exercise with soy protein ingestion. p70S6K phosphorylation was not increased post exercise with carbohydrate ingestion. CONCLUSIONS: Ingesting 30 g of either whey or soy protein resulted in equivalent p70S6K phosphorylation at 2 hours post exercise, however, unlike whey, soy protein failed to promote prolonged phosphorylation of p70S6K to 4 hours post-exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Confronted with increasing anthropogenic change, conservation in the 21st century requires a sound understanding of how ecological systems change during disturbance. We highlight the benefits of recognizing two distinct components of change in an ecological unit (i.e., ecosystem, community, population): 'resistance', the ability to withstand disturbance; and 'resilience', the capacity to recover following disturbance. By adopting a 'resistance-resilience' framework, important insights for conservation can be gained into: (i) the key role of resistance in response to persistent disturbance, (ii) the intrinsic attributes of an ecological unit associated with resistance and resilience, (iii) the extrinsic environmental factors that influence resistance and resilience, (iv) mechanisms that confer resistance and resilience, (v) the post-disturbance status of an ecological unit, (vi) the nature of long-term ecological changes, and (vii) policy-relevant ways of communicating the ecological impacts of disturbance processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconia-polymethylmetacrylate hybrids prepared by a sol-gel method were deposited by dip-coating on stainless steel to improve the resistance against wet corrosion. The effect of the concentration of polymethylmetacrylate and the number of coating applications on the microstructure and corrosion performance of coated samples was investigated. The microstructural properties of samples was analyzed by scanning electron and atomic force microscopy, adhesion tests and profilemeter measurements. The electrochemical corrosion was evaluated through potentiodynamic polarization curves at room temperature. Results show that the sample prepared with 17 vol.% of polymethylmethacrylate has a maximum corrosion resistance, smaller roughness, are hermetic and adherent to the substrate. This film increases the life time of the stainless steel by a factor 30. (C) 1999 Elsevier B.V. B.V. All rights reserved.