992 resultados para leaf area index (LAI)
Resumo:
Brazil is the world's second largest producer of cassava, which most of the production is used to make flour and starch, generating large amounts of waste, cassava. In general, this waste is disposed of directly into the soil and waterways, causing serious environmental impacts. In view of this, the aim of this work was to evaluate the use of cassava wastewater water (cassava) as organic fertilizer in Brachiaria brizantha pasture. Marandu. The experiment was conducted at the Campus Macaíba the Federal University of Rio Grande do Norte. The treatments were increasing rates of cassava, applied to the soil as organic fertilizer. The experimental design was a randomized block design with six treatments and four replications. The treatments consist of cassava doses (0, 15, 30, 60 and 120 m³ ha- 1 ) and a treatment with mineral fertilizer (AM) in the form of NPK (140: 30: 120 kg ha-1 ). Three cuts with an interval of 60 days were carried out. The variables evaluated were: plant height; accumulation of morphological components of fodder; Trapping Light (IL); Leaf Area Index (LAI); Total chlorophyll (CT); Feature Production Seca (PMS). The dry matter production at a dose of 120 m³ha-1 had a quantitative increase, with a total production in 2796 kg ha-1 DM in the second cut, providing an increase of 493% compared to control, and the residual effect observed in the third cut caused a 100% increase compared to 0 m³ ha-1 . Comparing the PMS obtained with the use of AM and other treatments it was observed that it was the second cut equivalent to a dose of 120 m³ ha-1 and the third equivalence has been cut at doses 60 and 120 m³ha-1. For the variables plant height, IL, IAF, CT and leaves Mass adding cassava in the soil promoted a positive linear increase for the three cuts. However, with the AM the IAF was superior to the other treatments. The thatched mass reached its highest production (838 kg ha-1 DM) in the second cut when using a dose of 120 m³ha-1 . In dead material mass in the second and third sections, there was increased linearly increased total of 322 and 452% respectively, compared to a dose of 0 m³ha-1 . The use of cassava showed herbicidal effect for the variable mass of the undesirable negative linear response resulting in decreasing the amount of residue with increasing doses. Manipueira can be used as organic fertilizer in Brachiaria brizantha cv. Marandu for improvements in the productive characteristics, as promoted significant increases in 8 most of the variables studied, especially at a dose of 120 m³ha-1 . This benefits the environment by being alternative for disposal of cassava.
Resumo:
This letter has tested the canopy height profile (CHP) methodology as a way of effective leaf area index (LAIe) and vertical vegetation profile retrieval at a single-tree level. Waveform and discrete airborne LiDAR data from six swaths, as well as from the combined data of six swaths, were used to extract the LAIe of a single live Callitris glaucophylla tree. LAIe was extracted from raw waveform as an intermediate step in the CHP methodology, with two different vegetation-ground reflectance ratios. Discrete point LAIe estimates were derived from the gap probability using the following: 1) single ground returns and 2) all ground returns. LiDAR LAIe retrievals were subsequently compared to hemispherical photography estimates, yielding mean values within ±7% of the latter, depending on the method used. The CHP of a single dead Callitris glaucophylla tree, representing the distribution of vegetation material, was verified with a field profile manually reconstructed from convergent photographs taken with a fixed-focal-length camera. A binwise comparison of the two profiles showed very high correlation between the data reaching R2 of 0.86 for the CHP from combined swaths. Using a study-area-adjusted reflectance ratio improved the correlation between the profiles, but only marginally in comparison to using an arbitrary ratio of 0.5 for the laser wavelength of 1550 nm.
Resumo:
Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.
Resumo:
The experiment was carried out on Cynodon spp cv. Tifton 85 pastures grazed by sheep under rotational stocking, with the objective of evaluating the structural characteristics as well as the forage mass of the pastures subjected to three grazing intensities in successive cycles. Treatments were composed of three residual leaf area indices (rLAI; 2.4; 1.6 and 0.8), allocated in completely randomized blocks with seven replications, totaling 21 experimental units. Tiller population density, pasture height, leaf area index, forage morphological composition and pasture forage mass were evaluated. The rLAI modified the tiller population density, which increased linearly with decrease in the rLAI of the pastures. Dry masses of leaf blade, stem and dead material were inferior when the rLAI imposed were lower, which resulted in differentiated forage production among the treatments. Tifton 85 pastures grazed by sheep in rotational stocking under tropical conditions with different rLAI show a modified sward structure over successive grazing cycles, mainly by alteration in the height and LAI of the plants at pre-grazing and by light interception post-grazing, which change the tiller population density. The residual leaf area index of 1.6 is the most suitable for pasture management for being equivalent to the heights of entrance and exit of animals on and from paddocks of 33 and 19 cm, respectively, which avoid great accumulation of dead material and excessive stem elongation, in addition to ensuring tillering in the sward.
Resumo:
Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Specific leaf area (SLA; m(leaf)(2) kg(leaf)(-1)) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain. Both individual tree-based models and other forest process-based models are generally highly sensitive to this parameter, but information on its temporal or within-stand variability is still scarce. In a 2-4-year-old Eucalyptus plantation in Congo, prone to seasonal drought, the within-stand and seasonal variability in SLA were investigated by means of destructive sampling carried out at 2-month intervals, over a 2-year period. Within-crown vertical gradients of SLA were small. Highly significant relationships were found between tree-average SLA (SLA(t)) and tree size (tree height, H(t), or diameter at breast height, DBH): SLA(t) ranged from about 9 m(2) kg(-1) for dominant trees to about 14-15 m(2) kg(-1) for the smallest trees. The decrease in SLA(t) with increasing tree size was accurately predicted from DBH using power functions. Stand-average SLA varied by about 20% during the year, with lowest values at the end of the 5-month dry season, and highest values about 2-3 months after the onset of the wet season. Variability in leaf water status according to tree size and season is discussed as a possible determinant of both the within-stand and seasonal variations in SM. (C) 2009 Elsevier B.V. All rights reserved.
LEAF AREA REDUCTION IN CORN GROWN IN A TROPICAL REGION OF BRAZIL AND ITS EFFECTS ON AGRONOMIC TRAITS
Resumo:
Global climate change may reduce leaf area in crop plants due to factors such as increasing occurrence of pests and diseases. The aim of this work was to estimate the impact of leaf area reduction on agronomic traits in corn. An experiment simulating leaf area reduction was carried out in a tropical region of Brazil. The agronomic performance of corn plants was evaluated at different percentages of leaf loss. It was observed that leaf area reductions over 41.01% significantly harm yield, mass of 1000 grains, cob density, and stem and root quality Crop improvement programs should take into account the development of genotypes resistant to factors that cause leaf area reduction in tropical crops.
Resumo:
Production of sorghum [Sorghum bicolor (L.) Moench], an important cereal crop in semiarid regions of the world, is often limited by drought. When water is limiting during the grain-filling period, hybrids possessing the stay-green trait maintain more photosynthetically active leaves than hybrids not possessing this trait. To improve yield under drought, knowledge of the extent of genetic variation in green leaf area retention is required. Field studies were undertaken in north-eastern Australia on a cracking and self-mulching gray clay to determine the effects of water regime and hybrid on the components of green leaf area at maturity (GLAM). Nine hybrids varying in stay-green were grown under a fully irrigated control, postflowering water deficit, and terminal (pre- and postflowering) water deficit. Water deficit reduced GLAM by 67% in the terminal drought treatment compared with the fully irrigated control. Under terminal water deficit, hybrids possessing the B35 and KS19 sources of stay-green retained more GLAM (1260 cm(2) plant(-1)) compared with intermediate (780 cm(2) plant(-1)) and senescent (670 cm(2) plant(-1)) hybrids. RQL12 hybrids (KS19 source of stay-green) displayed delayed onset and reduced rate of senescence; A35 hybrids displayed only delayed onset. Visual rating of green leaf retention was highly correlated with measured GLAM, although this procedure is constrained by an inability to distinguish among the functional mechanisms determining the phenotype. Linking functional rather than phenotypic differences to molecular markers may improve the efficiency of selecting for traits such as stay-green.
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Most studies of tiller development have not related the physiological and morphological features of each calm to its subsequent fertility. This introduced problems when trying to account for the effects of tillering on yield in crop models. The objective of this study was to detect the most likely early determinants of tiller fertility in sorghum by identifying hierarchies for emergence, fertility and grain number of tillers over a wide range of assimilate availabilities. Emergence, phenology, leaf area development and dry weight partitioning were quantified weekly for individual tillers and main culms of tillering and uniculm plants grown at one of four densities, from two to 16 plants m(-2). For a given plant in any given density, the same tiller hierarchy applied for emergence of tillers, fertility of the emerged tillers and their subsequent grain number. These results were observed over a range of tiller fertility rates (from 7 to 91%), fertile tiller number per plant at maturity (from 0.2 to 4.7), and tiller contribution to grain yield (from 5 to 78%). Tiller emergence was most probably related to assimilate supply and light quality. Development, fertility and contribution to yield of a specific tiller were highly dependent on growing conditions at the time of tiller emergence, particularly via early leaf area development of the tiller, which affected its subsequent leaf area accumulation. Assimilate availability in the main culm at the time of tiller emergence was the most likely early determinant of subsequent tiller fertility in this study. (C) 2002 Annals of Botany Company.
Resumo:
The ABA-deficient wilty pea (Pisum sativum L.) and its wild-type (WT) were grown at two levels of nitrogen supply (0.5 and 5.0 mM) for 5-6 weeks from sowing, to determine whether leaf ABA status altered the leaf growth response to N deprivation. Plants were grown at high relative humidity to prevent wilting of the wilty peas. Irrespective of N supply, expanding wilty leaflets had ca 50% less ABA than WT leaflets but similar ethylene evolution rates. Fully expanded wilty leaflets had lower relative water contents (RWC) and were 10-60% smaller in area (according to the node of measurement) than WT leaflets. However, there were no genotypic differences in plant relative leaf expansion rate (RLER). Growth of both genotypes at 0.5 mM N increased the RWC of fully expanded leaflets, but did not alter ethylene evolution or ABA concentration of expanding leaflets. Plants grown at 0.5 mM N showed a 20-30% reduction in RLER, which was similar in magnitude in both wilty and WT peas. Thus, leaf ABA status did not alter the leaf growth response to N deprivation.
Resumo:
Reduction in leaf area in corn plants during reproduction changes physiological metabolism and consequently the accumulation of dry matter in grains. The aim of this work was to study changes in agronomic characteristics caused by defoliation in corn during the reproduction phase. The experiment was carried out in Uberlândia, Minas Gerais state, in the agricultural year 2007/2008. The experiment was arranged in a randomized block design, consisting of seven treatments: control without defoliation, removal of two apical leaves, removal of four apical leaves, removal of all leaves above spike, removal of four intermediate leaves, removal of all leaves below spike, and removal of all plant leaves, with five repetitions. The genotype used for the evaluations was hybrid NB 7376. Defoliation was carried out when plants were at the growth stage R2. The variables assessed were: yield, density of spikes and corncobs, root resistance and stem integrity. When all leaves above the spike were removed, grain yield was reduced by 20%. Corncob density, stem integrity and root resistance to uprooting were also affected. Spike density was only affected when all plant leaves were removed. The leaf area remaining physiologically active above the spike was found to be most efficient in terms of grain yield.
Resumo:
Morpho-physiological characteristics and chemical composition are directly related to superior competitive ability of crops. This study intended to make a comparative analysis of dry matter production, leaf area and amount of epicuticular wax of three species of Sida spp: S. urens L., S. rhombifolia L. and S. spinosa L. Plants were collected at three growth stages: V1: stage described as up to 10 fully expanded leaves; V2: between 11 leaves and flowering; and R: after flowering. At stages V2 and R, the highest number of leaves was recorded for S. rhombifolia, followed by S. spinosa at V2 and S. urens at R. These results were relatively proportional to leaf area for all species. S. spinosa at the vegetative stage produced the highest values of specific leaf area (SLA), with no significant differences between species at the stage R. The amount of wax per unit of leaf area between species at the same developmental stage was significantly different only at the reproductive stage, where S. spinosa produced 23.18 and 6.23 fold more wax than S. urens and S. rhombifolia respectively. Between the growth stages of each species, there was decrease in the amount of wax with plant age and increase in leaf area (AFE), number of leaves and dry matter. The leaves of the Sida species exhibit different characteristics and this information can be used to optimize the use of herbicides in the control of these weeds.
Resumo:
Studies on nutritional status and leaf traits were carried out in two tropical tree species Swietenia macrophylla King (mahogany) and Dipetryx odorata Aubl. Willd. (tonka bean) planted under contrasting light environments in Presidente Figueiredo-AM, Brazil. Leaves of S. macrophylla and D. odorata were collected in three year-old trees grown under full sunlight (about 2000 µmol m-2 s-1) and natural shade under a closed canopy of Balsa-wood plantation (Ochroma pyramidale Cav. Ex. Lam.Urb) about 260 µmol m-2 s-1. The parameters analysed were leaf area (LA), leaf dry mass (LDM), specific leaf area (SLA) and leaf nutrient contents. It was observed that, S. macrophylla leaves grown under full sunlight showed LA 35% lower than those grown under shade. In D. odorata leaves these differences in LA were not observed. In addition, it was observed that S. macrophylla shade leaves, for LDM, were 50% smaller than sun leaves, while in D. odorata, there differences were not observed. SLA in S. macrophylla presented that sun leaves were three times smaller than those grown under shade. In D. odorata, no differences were observed. Nutrient contents in S. macrophylla, regardless of their light environments, showed higher contents for P and Ca than those found in D. odorata. The N, K, Fe and Mn contents in S. macrophylla leaves decreased under shade. Finally, we suggest that the decreasing in leaf nutrient contents may have a negative influence on leaf growth. The results demonstrated that the tested hypothesis is true for leaf traits, which D. odorata, late-successional species, showed lower plasticity for leaf traits than Swietenia macrophylla, mid-successional species.