998 resultados para leaf appearance rate
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
No information is available on the decomposition and nutrient release pattern of Piper aduncum and Imperata cylindrica despite their importance in shifting cultivation systems of Papua New Guinea and other tropical regions. We conducted a litter bag study (24 weeks) on a Typic Eutropepts in the humid lowlands to assess the rate of decomposition of Piper aduncum, Imperata cylindrica and Gliricidia sepium leaves under sweet potato (Ipomoea batatas). Decomposition rates of piper leaf litter were fastest followed closely by gliricidia, and both lost 50% of the leaf biomass within 10 weeks. Imperata leaf litter decomposed much slower and half-life values exceeded the period of observation. The decomposition patterns were best explained by the lignin plus polyphenol over N ratio which was lowest for piper (4.3) and highest for imperata (24.7). Gliricidia leaf litter released 79 kg N ha(-1), whereas 18 kg N ha(-1) was immobilised in the imperata litter. The mineralization of P was similar for the three species, but piper litter released large amounts of K. The decomposition and nutrient release patterns had significant effects on the soil. The soil contained significantly more water in the previous imperata plots at 13 weeks due to the relative slow decomposition of the leaves. Soil N levels were significantly reduced in the previous imperata plots due to immobilisation of N. Levels of exchangeable K were significantly increased in the previous piper plots due to the large addition of K. It can be concluded that piper leaf litter is a significant and easily decomposable source of K which is an important nutrient for sweet potato. Gliricidia leaf litter contained much N, whereas imperata leaf litter releases relatively little nutrients and keeps the soil more moist. Gliricidia fallow is more attractive than an imperata fallow for it improves the soil fertility and produces fuelwood as additional saleable products.
Resumo:
Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.
Resumo:
Context: Inclusion of antioxidants in topical formulations can contribute to minimize oxidative stress in the skin, which has been associated with photoaging, several dermatosis and cancer. Objective: A Castanea sativa leaf extract with established antioxidant activity was incorporated into a semisolid surfactant-free formulation. The objective of this study was to perform a comprehensive characterization of this formulation. Materials and methods: Physical, microbiological and functional stability were evaluated during 6 months storage at 20 °C and 40 °C. Microstructure elucidation (cryo-SEM), in vitro release and in vivo moisturizing effect (Corneometer® CM 825) were also assessed. Results and discussion: Minor changes were observed in the textural and rheological properties of the formulation when stored at 20 °C for 6 months and the antioxidant activity of the plant extract remained constant throughout the storage period. Microbiological quality was confirmed at the end of the study. Under accelerated conditions, higher modifications of the evaluated parameters were observed. Cryo-SEM analysis revealed the presence of oil droplets dispersed into a gelified external phase. The release rate of the antioxidant compounds (610 ± 70 µgh−0.5) followed Higuchi model. A significant in vivo moisturizing effect was demonstrated, that lasted at least 4 h after product’s application. Conclusion: The physical, functional and microbiological stability of the antioxidant formulation was established. Specific storage conditions should be recommended considering the influence of temperature on the stability. A skin hydration effect and good skin tolerance were also found which suggests that this preparation can be useful in the prevention or treatment of oxidative stress-mediated dysfunctions.
Resumo:
Native from south eastern Australia, Eucalyptus globulus is the main species in eucalypts plantations in Portugal. The most serious foliar disease in eucalypt plantations is linked to Mycosphaerella senso lato, which affects young trees in the juvenile phase foliage causing leaf necrosis. This disease results in reduced growth rate of the host and lower wood volume, thus causing significant productivity losses. The most common name for this disease was Mycosphaerella Leaf Disease that became inappropriate when most of the pathogens on eucalypts were re-distributed into several genera. The term "Eucalyptus Leaf Disease Complex" is now more appropriate. The overall aim of this thesis was to investigate the Eucalyptus Leaf Disease Complex in Portugal, focusing on species diversity, taxonomy and the role played by each species in the disease complex on Eucalyptus globulus. Literature on the Eucalyptus Leaf Disease Complex was reviewed and the species were distributed into several genera. A survey based on symptomatic leaves collected from several Eucalyptus globulus plantations and characterized by morphological and molecular tools provided an overview of species incidence and of the most frequent species in the disease complex. The present work reveals additional species of Mycosphaerella senso lato associated with eucalypt plantations in Portugal. Thus, five new records of Teratosphaeria and phylogenetically related species were added to the Iberian Peninsula, namely, Neodevriesia hilliana, for the first time on Myrtaceae; Quasiteratosphaeria mexicana, Teratosphaericola pseudoafricana, Teratosphaeria pluritubularis and Teratosphaeria lusitanica, a new species. Furthermore, new anamorphic structures were found and two new combinations were made. Regarding other genera, some species were observed for the first time, such as Cladosporium cladosporioides, Fusicladium eucalypti, Mycosphaerella madeirae, in the mainland. In addition to leave diseases, Teratosphaeria gauchensis was found causing a severe stem and trunk canker on Eucalyptus globulus. The aggressiveness of several species was compared to evaluate each species individually in the complex, permitting to distinguish different behaviours, from primary to secondary pathogens. Cladosporium cladosporioides, M. communis and M. lateralis, appeared to be more aggressive than Teratosphaeria nubilosa. In fact, contrary to the prevailing views on this disease complex, Teratosphaeria nubilosa is not the only species responsible for the disease, which clearly involves a complex of species acting together.
Resumo:
Leaves from 120 canopy trees and 60 understory tree saplings growing in primary and secondary forests near Manaus, Brazil, were collected for determination of standing levels of herbivory (percent leaf area lost). Overall, levels of herbivory on leaves of central Amazonian trees were low. About one quarter of the leaves examined (n = 855) had no damage at all. In most other Neotropical sites studied the mean percentage of herbivory was found to vary between 5.7 and 13.1%, whereas in Manaus it was only 3.1%. The data presented here support the contention that levels of herbivore damage are positively related to soil fertility. No significant difference was found in herbivory levels between canopy trees and understory saplings. Also, there was no difference in damage between leaves from pioneer and late successional trees. Field assays of preference, however, revealed that leaves from pioneer trees are more palatable to leaf-cutting ants (Atta laevigata). This effect was dependent upon leaf age, being observed in mature leaves, but not in young leaves. The greater rate of leaf production in secondary forests may be a factor accounting for the greater abundance of leaf-cutting ants in secondary compared to primary forests.
Resumo:
In the Brazilian Amazon, large areas of abandoned lands may revert to secondary forest. In the process, pioneer tree species have an important role to restore productivity in old fields and improve environmental conditions. To determine potential photosynthesis (Apot), stomatal conductance (g), transpiration (E), and leaf micronutrient concentrations in Ochroma pyramidale (Cav. ex Lam.) Urban a study was carried out in the Brazilian Amazon (01o 51' S; 60o 04' W). Photosynthetic parameters were measured at increasing [CO2], saturating light intensity (1 mmol (photons) m-2 s-1), and ambient temperature. The rate of electron-transport (J), Apot,and water-use efficiency (WUE) increased consistently at increasing internal CO2 concentration (Ci). Conversely, increasing [CO2] decreased gs, E, and photorespiration (Pr). At the CO2-saturated region of the CO2 response curve (1.1 mmol (CO2) mol-1(air), J was 120 μmol (e-) m-2s-1 and Apot reached up to 24 μmol (CO2) m-2s-1. Likewise, at saturating C1 g and E were 30 and 1.4 mmol (H2O) m-2s-1, respectively, and P 2 r about 1.5 μmol (CO2) m-2s-1. Foliar nutrients were 185, 134, 50, and 10 μmol (element) m-2 (leaf area) for Fe, Mn, Zn, and Cu, respectively. It was concluded that [CO ] probably limits light saturated photosynthesis in this site. Furthermore, from a nutritional point of view, the low Fe to Cu ratio (15:1) may reflect nutritional imbalance in O. pyramidale at this site.
Resumo:
In several cotton crops areas of the State of S. Paulo it was observed, during the years of 1948, 1949, and 1951, the appearance of a purple color of the leaves; the color appears in the opening of the bolls and was correlated with a decrease of production. The opinions concerning the cause of such abnormality were very different and sometimes contradictory; certain investigators attributed the disease to insect attack, others to bad climatic conditions whereas others to a potassium deficiency now called "fome de potássio" (potash hunger); our ideas on the subject is another one. We think that the disease is caused by lack of a suitable supply of magnesium. This opinion is largely based on the syntomatology found in the literature. To study the problem, several experiments were carried out, namely: 1. pot experiments using soil collected in areas where the disorder had appeared; 2. pot experiments controlling the water supply; 3. sand culture experiments omitting either potassium or magnesium; 4. leaf analysis of plant matrial collected troughout the Piracicaba County; 5. plot experiments with the varieties Texas, Express, and I.A. 817 Campinas. The first four experiments were discussed elsewhere. To study the point 5 an experiment was carried out, with the following treatments : 1 - NPKCaMg (no K added) - Mg supplied as MgSO4 (a soluble form); 2 -NPKCa (no Mg added); 3 -NPKCaMg (complete) - Mg supplied as MgSO4; 4 - NPKCaMg (complete) - Mg supplied as dolomitic limestone (a slightly soluble form) as a rate 2.5 higher than in the treatment 1 and 3. Organic matter as cottonseed meal was applied in the proportion of 500 kg per hectare. The experimental design was randomized blocks with 4 replications and the results can be summarized as follows: 1 the I.A 817 variety was the most strongly affected by the physiological disorder, with severe decrease in yield; 2. the disease occurred more frequently in the minus magnesium treatment; 3. dolomitic limestone is so effective as magnesium sulfate in the control of the disease as well in the raising of the yield; 4. in the minus K treatment it was observed a marked occurrence of the typical symptoms of potassium deficiency (cotton rust); 5. magnesium was actually, in the experimental conditions the responsible for the purple color (vermelhão) of the cotton leaves.
Resumo:
This paper devotes to evaluation of performance bottlenecks and algorithm deficiencies in the area of contemporary reliable multicast networking. Hereby, the impact of packet delay jitter on the end-to-end performance of multicast IP data transport is investigated. A series of tests with two most significant open-source implementations of reliable multicast is performed and analyzed. These are: UDP-based File Transfer Protocol (UFTP) and NACK-oriented Reliable multicast (NORM). Tests were targeted to simulate scenario of content distribution in WAN – sized Content Delivery Networks (CDN). Then, results were grouped and averaged, by round trip time and packet losses. This enabled us to see jitter influence independently on round trip time(RTT) and packet loss rates. Revealed jitter influence for different network conditions. Confirmed, that appearance of even small jitter causes significant data rate reduction.
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
Abstract: The use of an enriched CO2 atmosphere in tree nurseries has been envisaged as a promising technique to increase productivity and to obtain seedlings with a higher root/shoot ratio, an essential trait to respond to water stress in Mediterranean-type ecosystems. In that framework, we have analyzed the effects of three levels of atmospheric CO2 concentration (350, 500 and 700 ppm) on the germination rate, growth and morphology of seedlings of two Mediterranean oaks used in reforestation programs: the evergreen Quercus ilex L. and the deciduous Quercus cerrioides Wilk. et Costa. CO2 enrichment increased the germination rate of Q. cerrioides (from 70±7 to 81±3 %) while it decreased that of Q. ilex (from 71±10 to 41±12 %). Seedlings of both species increased approximately 60% their total biomass in response to CO2 enrichment but at two different CO2 concentrations: 500 ppm for Q. cerrioides and 700 ppm for Q. ilex. This increase in seedlings biomass was entirely due to an augmentation of root biomass. Considering germination and biomass partitioning, an enriched CO2 atmosphere might not be appropriate for growing Mediterranean evergreen oaks, such as Q. ilex, since it reduces acorn germination and the only gains in root biomass occur at a high concentration (700 ppm). On the other hand, a moderate CO2 enrichment (500 ppm) appears as a promising nursery technique to stimulate the germination, growth and root/shoot ratio of deciduous oaks, such as Q. cerrioides. Resumen: El uso de una atmósfera enriquecida en CO2 durante la fase de vivero puede contribuir a aumentar la producción viverÃstica, a la vez que ayudar a conseguir plántulas con una mayor relación biomasa subterránea/biomasa aérea, más adecuadas para hacer frente al severo estrés hÃdrico que generalmente limita el éxito de las repoblaciones en el clima Mediterráneo. En este estudio hemos analizado el efecto de tres niveles de abonado carbónico atmosférico (350, 500 y 750 ppm) en la germinación y morfologÃa de plántulas de encina (Quercus ilex) y roble cerrioide (Quercus cerrioides). Una atmósfera enriquecida en CO2 incrementó la germinación de Q. cerrioides (de 70±7 a 81±3 %) mientras que disminuyó la de Q. ilex (de 71±10 a 41±12 %). Las plántulas de ambas especies incrementaron aproximadamente un 60% su biomasa en respuesta a una mayor concentración de CO2, aunque esta respuesta se produjo a diferentes dosis: 500 ppm en Q. cerrioides y 700 ppm en Q. ilex. El aumento en la biomasa total de las plántulas se debió enteramente a un mayor desarrollo de su sistema radical, Considerando tanto la germinación como los efectos sobre la relación biomasa subterránea/biomasa aérea, una atmósfera enriquecida en CO2 no parece ser un tratamiento adecuado para la producción en vivero de plántulas de Q.ilex, puesto que diminuye su germinación y solo aumenta su sistema radicular a dosis muy elevadas (700 ppm). Por el contrario, un aumento moderado en la concentración de CO2 (500 ppm) aparece como una técnica interesante para estimular el crecimiento y obtener plántulas de Q. cerrioides con un sistema radical más desarrollado.
Resumo:
Pleistocene glacial and interglacial periods have moulded the evolutionary history of European cold-adapted organisms. The role of the different mountain massifs has, however, not been accurately investigated in the case of high-altitude insect species. Here, we focus on three closely related species of non-flying leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae), which are often found in sympatry within the mountain ranges of Europe. After showing that the species concept as currently applied does not match barcoding results, we show, based on more than 700 sequences from one nuclear and three mitochondrial genes, the role of biogeography in shaping the phylogenetic hypothesis. Dating the phylogeny using an insect molecular clock, we show that the earliest lineages diverged more than 1 Mya and that the main shift in diversification rate occurred between 0.36 and 0.18 Mya. By using a probabilistic approach on the parsimony-based dispersal/vicariance framework (MP-DIVA) as well as a direct likelihood method of state change optimization, we show that the Alps acted as a cross-roads with multiple events of dispersal to and reinvasion from neighbouring mountains. However, the relative importance of vicariance vs. dispersal events on the process of rapid diversification remains difficult to evaluate because of a bias towards overestimation of vicariance in the DIVA algorithm. Parallels are drawn with recent studies of cold-adapted species, although our study reveals novel patterns in diversity and genetic links between European mountains, and highlights the importance of neglected regions, such as the Jura and the Balkanic range.
Resumo:
Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.