915 resultados para laser range finder


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni80Fe20 thin films with high orientation were grown on Si(1 0 0) using pulsed laser ablation. The anisotropic magnetoresistance (AMR) and the planar Hall measurements show a 2.5% resistance anisotropy and a 45% planar Hall voltage change for magnetic field sweep of 10 Oe. The planar Hall sensitivity dR/dH was found to be 900 Omega T-1 compared with a previously reported maximum of 340 Omega T-1 in the same system.Also these films are found to withstand repeated thermal cycling up to 110 degrees C and the Hall sensitivity remains constant within this temperature range. This combination of properties makes the system highly suitable for low magnetic field sensors, particularly in geomagnetic and biosensor applications. To elucidate this, we have demonstrated that these sensors are sensitive to Earth's magnetic field. These results are compared with the sputter deposited films which have a very low AMR and planar Hall voltage change as compared with the films grown by PLD. The possible reasons for these contrasting characteristics are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the first procedure in a seeing human eye using excimer laser was reported in 1988 (McDonald et al. 1989, O'Connor et al. 2006) just three studies (Kymionis et al. 2007, O'Connor et al. 2006, Rajan et al. 2004) with a follow-up over ten years had been published when this thesis was started. The present thesis aims to investigate 1) the long-term outcomes of excimer laser refractive surgery performed for myopia and/or astigmatism by photorefractive keratectomy (PRK) and laser-in situ- keratomileusis (LASIK), 2) the possible differences in postoperative outcomes and complications when moderate-to-high astigmatism is treated with PRK or LASIK, 3) the presence of irregular astigmatism that depend exclusively on the corneal epithelium, and 4) the role of corneal nerve recovery in corneal wound healing in PRK enhancement. Our results revealed that in long-term the number of eyes that achieved uncorrected visual acuity (UCVA)≤0.0 and ≤0.5 (logMAR) was higher after PRK than after LASIK. Postoperative stability was slightly better after PRK than after LASIK. In LASIK treated eyes the incidence of myopic regression was more pronounced when the intended correction was over >6.0 D and in patients aged <30 years.Yet the intended corrections in our study were higher for LASIK than for PRK eyes. No differences were found in percentages of eyes with best corrected visual acuity (BCVA) or loss of two or more lines of visual acuity between PRK and LASIK in the long-term. The postoperative long-term outcomes of PRK with two different delivery systems broad beam and scanning laser were compared and revealed no differences. Postoperative outcomes of moderate-to-high astigmatism yielded better results in terms of UCVA and less compromise or loss of two more lines of BCVA after LASIK that after PRK.Similar stability for both procedures was revealed. Vector analysis showed that LASIK outcomes tended to be more accurate than PRK outcomes, yet no statistically differences were found. Irregular astigmatism secondary to recurrent corneal erosion due to map-dot-fingerprint was successfully treated with phototherapeutic keratectomy (PTK). Preoperative videokeratographies (VK) showed irregular astigmatism. However, postoperatively, all eyes showed a regular pattern. No correlation was found between pre- and postoperative VK patterns. Postoperative outcomes of late PRK in eyes originally subjected to LASIK showed that all (7/7) eyes achieved UCVA ≤0.5 at last follow-up (range 3 — 11 months), and no eye lost lines of BCVA. Postoperatively all eyes developed and initial mild haze (0.5 — 1) into the first month. Yet, at last follow-up 5/7 eyes showed a haze of 0.5 and this was no longer evident in 2/7 eyes. Based on these results, we demonstrated that the long-term outcomes after PRK and LASIK were safe and efficient, with similar stability for both procedures. The PRK outcomes were similar when treated by broad-beam or scanning slit laser. LASIK was better than PRK to correct moderate-to-high astigmatism, yet both procedures showed a tendency of undercorrection. Irregular astigmatism was proven to be able to depend exclusively from the corneal epithelium. If this kind of astigmatism is present in the cornea and a customized PRK/LASIK correction is done based on wavefront measurements an irregular astigmatism may be produced rather than treated. Corneal sensory nerve recovery should have an important role in the modulation of the corneal wound healing and post-operative anterior stromal scarring. PRK enhancement may be an option in eyes with previous LASIK after a sufficient time interval that in at least 2 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to obtain basic understanding of microstructure evolution in laser-surface-alloyed layers, aluminum was surface alloyed on a pure nickel substrate using a CO2 laser. By varying the laser scanning speed, the composition of the surface layers can be systematically varied. The Ni content in the layer increases with increase in scanning speed. Detailed cross-sectional transmission electron microscopic study reveals complexities in solidification behavior with increased nickel content. It is shown that ordered B2 phase forms over a wide range of composition with subsequent precipitation of Ni2Al, an ordered omega phase in the B2 matrix, during solid-state cooling. For nickel-rich alloys associated with higher laser scan speed, the fcc gamma phase is invariably the first phase to grow from the liquid with solute trapping. The phase reorders in the solid state to yield gamma' Ni3Al. The phase competes with beta AlNi, which forms massively from the liquid. The beta AlNi transforms martensitically to a 3R structure during cooling in solid state. The results can be rationalized in terms of a metastable phase diagram proposed earlier. However, the results are at variance with earlier studies of laser processing of nickel-rich alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was done on pulsed laser deposited relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with template layers to observe the influence of the template layers on physical and electrical properties. Initial results, showed that perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on Pt/Ti/SiO2/Si substrates. The films were grown at 300°C and then annealed in a rapid thermal annealing furnace in the temperature range of 750-850°C to induce crystallization. Comparison of the films annealed at different temperatures revealed a change in crystallinity, perovskite phase formation and grain size. These results were further used to improve the quality of the perovskite PMN-PT phase by inserting thin layers of TiO2 on the Pt substrate. These resulted in an increase in perovskite phase in the films even at lower annealing temperatures. Dielectric studies on the PMN-PT films show very high values of dielectric constant (1300) at room temperature, which further improved with the insertion of the template seed layer. The relaxor properties of the PMN-PT were correlated with Vogel-Fulcher theory to determine the actual nature of the relaxation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 degreesC using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 degreesC to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 degreesC. Films with highest perovskite content were found to form at 820-840 degreesC on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 degreesC. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan delta) of 0.035 at a frequency of 1 kHz at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of (1-x)Pb(Mg1/3Nb2/3)O-3 - xPbTiO(3) (x = 0.1 to 0.3)(PMN-PT) were deposited on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor- type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (T-m) and also diffuse phase transition. C1 Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka 560012 India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.