980 resultados para laser induce damage mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to evaluate, by light microscopy, the effects of laser phototherapy (LPT) at 780nm or a combination of 660 and 790 nm, on the inflammatory process of the rat temporomandibular joint (TMJ) induced by carrageen. Background: Temporomandibular disorders (TMDs) are frequent in the population and generally present an inflammatory component. Previous studies have evidenced positive effects of laser phototherapy on TMDs. However, its mechanism of action on the inflammation of the TMJ is not known yet. Materials and Methods: Eighty-five Wistar rats were divided into 9 groups: G1, Saline; G2, Saline + LPT IR; G3, Saline + LPT IR + R; G4, Carrageenan; G5, Carrageenan + LPT IR; G6, Carrageenan + LPT IR + R; G7, previous LPT + Carrageenan; G8, previous LPT + carrageenan + LPT IR; and G9, previous LPT + carrageenan + LPT IR + R, and then subdivided in subgroups of 3 and 7 days. After animal death, specimens were taken, routinely cut and stained with HE, Sirius Red, and Toluidine Blue. Descriptive analysis of components of the TMJ was done. The synovial cell layers were counted. Results: Injection of saline did not produced inflammatory reaction and the irradiated groups did not present differences compared to non-irradiated ones. After carrageenan injection, intense inflammatory infiltration and synovial cell layers proliferation were observed. The infrared irradiated group presented less inflammation and less synovial cell layers number compared to other groups. Previous laser irradiation did not improve the results. Conclusion: It was concluded that the LPT presented positive effects on inflammatory infiltration reduction and accelerated the inflammation process, mainly with IR laser irradiation. The number of synovial cell layers was reduced on irradiated group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aims of the present study were to investigate the effect of low-intensity laser irradiation on the total number of mast cells as well as the percentage of degranulation in human gingiva. Blood vessel dilation was also evaluated. Background Data: It has been proposed that low-intensity laser irradiation can ameliorate pain, swelling, and inflammation. In periodontal tissue, mast cells may influence either the destructive events or the defense mechanism against periodontal disease via secretion of cytokines and through cellular migration to improve the healing process. Mast cells play an important role in the inflammatory process. Methods: Twenty patients with gingival enlargement indicated for gingivectomy were selected. Gingival fragments were obtained from each patient and divided into three different groups before surgery. One fragment was removed without any irradiation. The two others were submitted to punctual irradiation with an energy density of 8 J/cm(2) at an output power of 50 mW at 36 Hz for 36 sec before gingivectomy. Nondegranulated and degranulated mast cells were counted in five areas of the gingival fragment connective tissue. Major and minor diameters of the blood vessels were also measured. Results: Both red and infrared radiation promoted a significant increase in mast cell degranulation compared to controls; however, no statistically significant differences (p > 0.05) were observed between the irradiated groups. No significant differences among the groups were observed regarding blood vessel size. Conclusion: The results suggests that red and infrared wavelengths promote mast cell degranulation in human gingival tissue, although no dilation of blood vessels was observed. The effects of premature degranulation of mast cells in human tissue and the laser radiation protocol applied in this study encourage further investigations to extend these results into clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: In this study we evaluated the ablation rate of superficial and deep dentin irradiated with different Er:YAG laser energy levels, and observed the micromorphological aspects of the lased substrates with a scanning electron microscope (SEM). Background Data: Little is known about the effect of Er: YAG laser irradiation on different dentin depths. Materials and Methods: Sixty molar crowns were bisected, providing 120 specimens, which were randomly assigned into two groups ( superficial or deep dentin), and later into five subgroups (160, 200, 260, 300, or 360 mJ). Initial masses of the specimens were obtained. After laser irradiation, the final masses were obtained and mass losses were calculated followed by the preparation of specimens for SEM examination. Mass-loss values were subjected to two-way ANOVA and Fisher's least significant difference multiple-comparison tests (p < 0.05). Results: There was no difference between superficial and deep dentin. A significant and gradual increase in the mass-loss values was reached when energies were raised, regardless of the dentin depth. The energy level of 360 mJ showed the highest values and was statistically significantly different from the other energy levels. The SEM images showed that deep dentin was more selectively ablated, especially intertubular dentin, promoting tubule protrusion. At 360 mJ the micromorphological features were similar for both dentin depths. Conclusion: The ablation rate did not depend on the depth of the dentin, and an energy level lower than 360 mJ is recommended to ablate both superficial and deep dentin effectively without causing tissue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged alpha-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Data and Objective: There is anecdotal evidence that low-level laser therapy (LLLT) may affect the development of muscular fatigue, minor muscle damage, and recovery after heavy exercises. Although manufacturers claim that cluster probes (LEDT) maybe more effective than single-diode lasers in clinical settings, there is a lack of head-to-head comparisons in controlled trials. This study was designed to compare the effect of single-diode LLLT and cluster LEDT before heavy exercise. Materials and Methods: This was a randomized, placebo-controlled, double-blind cross-over study. Young male volleyball players (n = 8) were enrolled and asked to perform three Wingate cycle tests after 4 x 30 sec LLLT or LEDT pretreatment of the rectus femoris muscle with either (1) an active LEDT cluster-probe (660/850 nm, 10/30mW), (2) a placebo cluster-probe with no output, and (3) a single-diode 810-nm 200-mW laser. Results: The active LEDT group had significantly decreased post-exercise creatine kinase (CK) levels (-18.88 +/- 41.48U/L), compared to the placebo cluster group (26.88 +/- 15.18U/L) (p < 0.05) and the active single-diode laser group (43.38 +/- 32.90U/L) (p<0.01). None of the pre-exercise LLLT or LEDT protocols enhanced performance on the Wingate tests or reduced post-exercise blood lactate levels. However, a non-significant tendency toward lower post-exercise blood lactate levels in the treated groups should be explored further. Conclusion: In this experimental set-up, only the active LEDT probe decreased post-exercise CK levels after the Wingate cycle test. Neither performance nor blood lactate levels were significantly affected by this protocol of pre-exercise LEDT or LLLT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate if development of skeletal muscle fatigue during repeated voluntary biceps contractions could be attenuated by low-level laser therapy (LLLT). Background Data: Previous animal studies have indicated that LLLT can reduce oxidative stress and delay the onset of skeletal muscle fatigue. Materials and Methods: Twelve male professional volleyball players were entered into a randomized double-blind placebo-controlled trial, for two sessions (on day 1 and day 8) at a 1-wk interval, with both groups performing as many voluntary biceps contractions as possible, with a load of 75% of the maximal voluntary contraction force (MVC). At the second session on day 8, the groups were either given LLLT (655 nm) of 5 J at an energy density of 500 J/cm(2) administered at each of four points along the middle of the biceps muscle belly, or placebo LLLT in the same manner immediately before the exercise session. The number of muscle contractions with 75% of MVC was counted by a blinded observer and blood lactate concentration was measured. Results: Compared to the first session (on day 1), the mean number of repetitions increased significantly by 8.5 repetitions (+/- 1.9) in the active LLLT group at the second session (on day 8), while in the placebo LLLT group the increase was only 2.7 repetitions (+/- 2.9) (p = 0.0001). At the second session, blood lactate levels increased from a pre-exercise mean of 2.4 mmol/L (+/- 0.5 mmol/L), to 3.6 mmol/L (+/- 0.5 mmol/L) in the placebo group, and to 3.8 mmol/L (+/- 0.4 mmol/L) in the active LLLT group after exercise, but this difference between groups was not statistically significant. Conclusion: We conclude that LLLT appears to delay the onset of muscle fatigue and exhaustion by a local mechanism in spite of increased blood lactate levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast and reversible phase transition mechanism between crystalline and amorphous phases of Ge(2)Sb(2)Te(5) has been in debate for several years. Through employing first-principles density functional theory calculations, we identify a direct structural link between the metastable crystalline and amorphous phases. The phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from stable octahedron to high energy unstable tetrahedron sites close to the intrinsic vacancy regions, which generates a high energy intermediate phase between metastable and amorphous phases. Due to the instability of Ge at the tetrahedron sites, the Ge atoms naturally shift away from those sites, giving rise to the formation of local-ordered fourfold motifs and the long-range structural disorder. Intrinsic vacancies, which originate from Sb(2)Te(3), lower the energy barrier for Ge displacements, and hence, their distribution plays an important role in the phase transition. The high energy intermediate configuration can be obtained experimentally by applying an intense laser beam, which overcomes the thermodynamic barrier from the octahedron to tetrahedron sites. The high figure of merit of Ge(2)Sb(2)Te(5) is achieved from the optimal combination of intrinsic vacancies provided by Sb(2)Te(3) and the instability of the tetrahedron sites provided by GeTe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage was investigated in the presence of sulfite, dissolved oxygen and cobalt(II) complexes with glycylglycylhistidine, glycylhistidyllysine, glycylglycyltyrosylarginine and tetraglycine. These studies indicated that only Co(II) complexed with glycylglycylhistidine (GGH) induced DNA strand breaks at low sulfite concentrations (1-80 mu M) via strong oxidants formed in the reaction. In the presence of the other complexes, some damage occurred only in the presence of high sulfite concentrations (0.1-2.0 mM) after incubation for 4 h. In the presence of GGH, Co(II) and dissolved O(2), DNA damage must involve a reactive high-valent cobalt complex. The damaging effect was increased by adding S(IV), due to the oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by the complex. SO(3)(center dot)-S-, HO(center dot) and H(center dot) radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline N-oxide). The results indicate that Co(II) binds O2 in the presence of GGH, and leads to the formation of a DMPO-HO(center dot) adduct without first forming free superoxide or hydroxyl radical, supporting the participation of a reactive high-valent cobalt complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex-structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.