975 resultados para landscape diversity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.
Resumo:
There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.
Resumo:
Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.
Resumo:
In this study alpha and beta diversity patterns of five leaf litter arthropod groups (ants, predatory ants, oribatid mites, spiders and other arachnids) were described and compared in 39 sampling patches of a transformed landscape in southwestern Colombia, that represented five vegetation types: secondary forest, riparian forest, giant bamboo forest, pasture and sugarcane crop. It was also assessed whether some taxa could be used as diversity surrogates. A total of 6,765 individuals grouped in 290 morphospecies were collected. Species richness in all groups was lower in highly transformed vegetation types (pasture, sugarcane crop) than in native ones (forests). In contrast, there were no clear tendencies of beta diversity among vegetation types. Considering sampling patches, 0.1-42% of the variation in alpha diversity of one taxonomic group could be explained from the alpha diversity of another, and 0.2-33% of the variation of beta diversity of a given taxon was explained by that in other groups. Contrary to recent findings, we concluded that patterns of alpha diversity are more congruent than patterns of beta diversity. This fact could be attributed to a sampling effect that promotes congruence in alpha diversity and to a lack of a clear regional ecological gradient that could promote congruent patterns of beta diversity. We did not find evidence for an ideal diversity surrogate although diversity patterns of predatory ants had the greatest congruencies. These results support earlier multi-taxon evaluations in that conservation planning should not be based on only one leaf litter arthropod group.
Resumo:
Soils of a large tropical area with differentiated landscapes cannot be treated uniformly for ecological applications. We intend to develop a framework based on physiography that can be used in regional applications. The study region occupies more than 1.1 million km² and is located at the junction of the savanna region of Central Brazil and the Amazon forest. It includes a portion of the high sedimentary Central Brazil plateau and large areas of mostly peneplained crystalline shield on the border of the wide inner-Amazon low sedimentary plain. A first broad subdivision was made into landscape regions followed by a more detailed subdivision into soil regions. Mapping information was extracted from soil survey maps at scales of 1:250000-1:500000. Soil units were integrated within a homogenized legend using a set of selected attributes such as taxonomic term, the texture of the B horizon and the associated vegetation. For each region, a detailed inventory of the soil units with their area distribution was elaborated. Ten landscape regions and twenty-four soil regions were recognized and delineated. Soil cover of a region is normally characterized by a cluster composed of many soil units. Soil diversity is comparable in the landscape and the soil regions. Composition of the soil cover is quantitatively expressed in terms of area extension of the soil units. Such geographic divisions characterized by grouping soil units and their spatial estimates must be used for regional ecological applications.
Resumo:
This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.
Resumo:
Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.
Resumo:
The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.
Resumo:
After long deliberations, the European Community (EC) has completed the reform of its audiovisual media regulation. The paper examines the main tenets of this reform with particular focus on its implications for the diversity of cultural expressions in the European media landscape. It also takes into account the changed patterns of consumer and business behaviour due to the advances in digital media and their wider spread in society. The paper criticises the somewhat unimaginative approach of the EC to new media and the political (and at times protectionist) considerations behind some of the Directive's provisions.
Resumo:
«Cultural mapping» has become a central keyword in the UNESCO strategy to protect world cultural and natural heritage. It can be described as a tool to increase the awareness of cultural diversity. As Crawhall (2009) pointed out, cultural mapping was initially considered to represent the «landscapes in two or three dimensions from the perspectives of indigenous and local peoples». It thus transforms the intangible cultural heritage to visible items by establishing profiles of cultures and communities, including music traditions. Cultural mapping is used as a resource for a variety of purposes as broad as peace building, adaptation to climate change, sustainability management, heritage debate and management, but can also become highly useful in the analysis of conflict points. Music plays a significant role in each of these aspects. This year’s symposium invites to highlight, yet also to critically reassess this topic from the following ethnomusicological perspectives: - The method of cultural mapping in ethnomusicology What approaches and research techniques have been used so far to establish musical maps in this context? What kinds of maps have been developed (and, for example, how far do these relate to indigenous mental maps that have only been transmitted orally)? How far do these modern approaches deviate from the earlier cultural mapping approaches of the cultural area approaches that were still evident with Alan P. Merriam and in Alan Lomax` Cantometrics? In how far are the methods of cultural mapping and of ethnomusicological fieldwork different and how can they benefit from each other? - Intangible cultural heritage and musical diversity As the 2003 UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage pointed out in Article 12, each state signing the declaration «shall draw up, in a manner geared to its own situation, one or more inventories of the intangible cultural heritage, present in its territory and monitor these.» This symposium calls for a critical re-assessment of the hitherto established UNESCO intangible cultural heritage lists. The idea is to highlight the sensitive nature and the effects of the various heritage representations. «Heritage» is understood here as a selection from a selection – a small subset of history that relates to a given group of people in a particular place, at a specific time (Dann and Seaton 2001:26). This can include presentations of case studies, yet also a critical re-analysis of the selection process, e.g. who was included – or even excluded (and why)? Who were the decision makers? How can the role of ethnomusicology be described here? Where are the (existent and possible) conflict points (politically, socially, legally, etc.)? What kinds of solution strategies are available to us? How is the issue of diversity – that has been so strongly emphasized in the UNESCO declarations – reflected in the approaches? How might diversity be represented in future approaches? How does the selection process affect musical canonization (and exclusion)? What is the role of archives in this process? - Cultural landscape and music As defined by the World Heritage Committee, cultural landscapes can be understood as a distinct geographical area representing the «combined work of nature and man» (http://whc.unesco.org/en/culturallandscape/). This sub-topic calls for a more detailed – and general – exploration of the exact relation between nature/landscape (and definition of such) and music/sound. How exactly is landscape interrelated with music – and identified (and vice versa)? How is this interrelation being applied and exploited in a (inter-)national context?
Resumo:
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
Resumo:
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Resumo:
The “dehesa” is a traditional Iberian agrosilvopastoral ecosystem characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity. We show the high diversity of saproxylic beetles and syrphids (Diptera) in this ecosystem, including red-listed species. We analyzed whether saproxylic species distribution in the “dehesa” was affected by tree density per hectare, dominant tree species or vegetation coverage. Species diversity did not correlate with tree density; however, it was affected by tree species and shrub coverage but in a different way for each taxon. The highest beetle diversity was linked to Quercus pyrenaica, the most managed tree species, with eight indicator species. In contrast, Q. rotundifolia hosted more species of saproxylic syrphids. Regarding vegetation coverage, shrub coverage was the only variable that affected insect richness, again in a different way for both taxa. In contrast, beetle species composition was only affected by dominant tree species whereas syrphid species composition was not affected by tree species or shrub coverage. We concluded that the high diversity of saproxylic insects in the “dehesa” is related to its long history of agrosilvopastoral management, which has generated landscape heterogeneity and preserved old mature trees. However, the richness and composition of different taxa of insects respond in different ways to tree species and vegetation coverage. Consequently, conservation strategies should try to maintain traditional management, and different saproxylic taxa should be used to monitor the effect of management on saproxylic diversity.